- Climate Wikience - http://www.wikience.org/ru -

Аэрозоль над городами Европы

Аэрозоль [1] — один из основных загрязнителей атмосферы, особенно в крупных городах. В частности, частицы PM2.5 и PM10 могут вызывать раковые заболевания легких.

Благодаря Climate Wikience, которая предоставляет временные ряды данных повторного анализа и дистанционного зондирования Земли для отдельных ячеек регулярной широтно-долготной решетки, появляется возможность выполнять исследования с высокой точностью. Например, для отдельных городов либо зон влияния промышленных предприятий.

О содержании аэрозоля в атмосфере городов Европы (различных типов и размеров) позволяет судить величина оптической толщины аэрозоля (ОТА), (англ. aerosol optical thickness, AOT), которая измеряется радиометром MODIS космического аппарата Terra (Terra MODIS).

Ниже представлены среднемесячные графики ОТА для городов Европы за 12 лет (с марта 2000 г. по сентябрь 2012 г.). ОТА изменяется в диапазоне от 0 до 5. Представленные графики ярко выражают существенное снижение содержания аэрозоля над некоторыми городами Европы.

Wikience__AOT_Rome_monthly_fit [2]

Рим

Wikience__AOT_Moscow_monthly_fit [3]

Москва

Wikience__AOT_London_monthly_fit [4]

Лондон

Wikience__AOT_Kiev_monthly_fit [5]

Киев

Wikience__AOT_Berlin_monthly_fit [6]

Берлин

Wikience__AOT_Donetsk_monthly_fit [7]

Донецк

Wikience__AOT_Amsterdam_linear_fit [8]

Амстердам

Wikience__AOT_Odessa_monthly_fit [9]

Одесса

Wikience__AOT_Paris_monthly_fit [10]

Париж

Для крупных городов характерны значения в районе 0.5. Значение ОТА редко превышает 1,0. Например, для Москвы, одного из наиболее подверженных аэрозольному загрязнению городов, зафиксировано всего лишь более 30 случаев значения ОТА выше 1,0 за проанализированные 12 лет. Частично это можно отнести к природным факторам, например, пожарам на окрестных территориях (например, торфяные пожары в России 2010 г. [11]). Для большинства городов Европы такие случаи наблюдаются еще реже.

Анализ трендов аэрозоля над Римом, Италия

Напомним, что пассивный метод дистанционного зондирования Земли аэрозоля возможен только при отсутствии облачности над исследуемой территорией. Для демонстрации возможностей анализа с помощью Climate Wikience и среды R выбран город Рим, Италия. Это один из городов, над которым почти постоянно в течении года наблюдается ясная погода.

Посмотрим, как построить график среднемесячной концентрации ОТА для Рима, который был показан в начале этой страницы. Ниже представлен код на языке R.

# Загрузка пакета RWikience для доступа к Сlimate Wikience
library(RWikience)
 
# Подключние к Climate Wikience
w <- WikienceConnect()
 
# Запрос временного ряда ОТА Terra MODIS для ячейки с координатами, соответствующими Риму
# с 03 марта 2000 г. по 04 октября 2012 г.
queryTimeSeries(w, "Modis L3 Atmosphere.Land.Optical_Depth_Land_And_Ocean.Maximum", "02 03 2000", "04 10 2012", 41, 12, 41, 12)
 
# Извлечение запрошенного временного ряда из Climate Wikience в среду R
t <- getTimeSeries(w, 0)
 
t_avg <- aggregate(t["value"], format(t["date"], "%Y-%m"), mean, na.rm = TRUE)
t_avg$date <- seq(min(t$date), max(t$date), length = nrow(t_avg))
plot(t_avg$date, t_avg$value, type="l")

 

Wikience_AOT_Rome [12]

Среднемесячная оптическая толщина аэрозоля для Рима, Италия.

Построим диаграмму Тьюки [13] для ежедневных значений ОТА над Римом на протяжении всех 12 лет.

ids <- which (t$value <= 2)
plot(as.factor(format(t$date[ids], "%m")), t$value[ids])

 

Wikience_AOT_Rome_boxplot [14]

Диаграмма Тьюки ежедневных значений ОТА над Римом
на протяжении 12 лет (2000 – 2012).

Из диаграммы Тюки следует, что ОТА имеет сезонный характер с максимальными значениями в летние месяцы и минимальными в зимние.

Поскольку доступны ежедневные данные ОТА, давайте наглядно отобразим значение оптической толщины аэрозоля в атмосфере Рима за каждый день.

library(openair)
calendarPlot(t, "value", 2004)

 

Wikience_AOT_Rome_CalendarPlot [15]

Оптическая толщина аэрозоля в атмосфере над г. Рим, Италия, в 2004 г.

Дни календарика без цвета означают отсутствие значения ОТА для этого дня по причине облачности либо других факторов.

Декомпозиция методом STL

Для более уверенного суждения о динамике концентрации аэрозоля над городами Европы, выполним декомпозицию среднемесячных временных рядов ОТА с помощью метода STL [16]. Из одного ряда можно выделить сезонный цикл, тренд и остаточные флуктуации в виде шума.

Поскольку пробелы в представленных временных рядах вызваны отсутствием данных для некоторых зимних месяцев по причине облачности, характерной для этого сезона, а метод STL требует непрерывного временного ряда, то для заполнения недостающих значений использовалась линейная аппроксимация.

library(zoo)
t_avg.trim <- na.trim(t_avg)	
t_avg.trim$value <- na.approx(t_avg$value)
t_avg.ts <- ts(t_avg.trim[,2], start=c(2000,3), freq=12)
plot(stl(t_avg.ts, s.window="periodic", robust=TRUE))

 

Wikience_AOT_Rome_STL [17]

Декомпозиция временного ряда
среднемесячной оптической толщины аэрозоля над Римом, Италия

На рисунке первый временной ряд – сезонный цикл, средний – тренд, последний внизу – остаточные флуктуации (шум).

Таким образом, за 12 лет над Римом содержание аэрозоля уменьшилось примерно на среднюю концентрацию, характерную для одного из зимних месяцев (0,2), с 0,45 до 0,25. Аналогичные исследования не обнаруживают снижения концентрации аэрозоля в атмосфере над городами Украины.

Следует отметить, что площадь ячейки 1,0°×1,0° обычно выше площади города и в ячейку может попадать часть близлежащей акватории, поэтому не всегда техногенные факторы доминируют в общей величине ОТА в ячейке.

Литература

Родригес Залепинос Р.А., Сравнительная оценка загрязнения атмосферного воздуха Европы и Украины с использованием данных дистанционного зондирования земли, Геотехническая механика. Труды института геотехнической механики НАН Украины, г. Днепропетровск. – [под ред. А.Ф. Булата], № 112, 2013. – 286 с. – С. 256 – 266. (сборник ВАК).
PDF ~636 KB
Родригес Залепинос Р.А., Исследование загрязнения атмосферного воздуха Европы аэрозолем с использованием данных дистанционного зондирования Земли, Науч. труды Донецкого национального технического университета. – [под ред. А.А. Минаева]. – Сер. : Системный анализ и информационные технологии в науках о природе и обществе, № 1(2) – 2(3), 2012. – 212 с. – С. 93 – 98.
PDF ~2.34 МБ [18]
Rodriges Zalipynis R.A., Risks of air pollution by aerosols over the territory of Europe, Materialy IX Mezinarodni Vedecko – Prakticka Konference “Veda a technologie: krok do budoucnosti”, Prague, Czech Republic, 27 April – 05 March, 2013. – P. 35 – 42.
HTML-online [19]
Rodriges Zalipynis R.A., Representing Earth remote sensing data as time series, Journal of system analysis and information technology in environmental and social sciences, № 1(2) – 2(3), 2012. – 212 pp. – P. 135 – 145.
PDF ~5.4 MB [20]
Email this to someone
email
[21]Share on Facebook
Facebook
[22]Share on LinkedIn
Linkedin
[23]Tweet about this on Twitter
Twitter
[24]