SSN 1996-1588 Hayxosi npayi [JonHTY sunyck 14(188)
Cepia “Inpopmamuxa, kibepnemuxa 2011

ma obuucnosalbHa mexuixa”’

YK 004.75, 004.272.2, 004.514, 004.632, 004.624, 608.2
R.A. Rodriges Zalipynis

Donetsk National Technical University
rodriges@csm.donntu.edu.ua

ChronosServer: real-time access to “native” multi-terabyte retrospective data
warehouse by thousands of concurrent clients

ChronosServer runs on a cluster of commodity hardware and possesses scalability, high availability, and
fault tolerance properties. It turns vast amounts of already existing data into actionable intelligence with
no changes to the source data files. ChronosServer discovers files on cluster nodes, analyses their
structure, and provides format independent SQL-like query model to access their contents. It is capable to
read compressed data directly in various formats, including NetCDF, GeoTIFF, GRIB, HDF and many
others. This entirely preserves original file metadata as is, vital for its correct interpretation and
processing by other software. New data added to the system in a seamless plug-and-play fashion by
simple copying it to a cluster node reducing administration overheads. This allows existing software like
GIS or statistical packages to operate on files in use by ChronosServer as well as unmodified legacy code
to generate data for it. ChronosServer preserves operational infrastructure intact avoiding painful, time-
consuming and error-prone data conversions while offering additional opportunities for data analysis.

Data warehouse, real-time access, file formats, metadata, intact operational infrastructure, legacy code

Introduction

The modern world experiences explosive
growth of data volumes generated at enormous rates.
Many organizations have accumulated and continue
collect data in diverse formats. There is software
capable to analyze separate data files. However, there
remain challenges, including interactive visualization,
requiring real-time data access.

The need for the approach is demonstrated on
the most largely used data for climate research —
reanalysis archives [1, 2, 3, 4, 5]. Their applications
vary from deriving simple warming trends to cyclone
tracking [7, 8]. These data provide unprecedented
opportunities to better understand and, hence, prepare
and adapt to storm events, droughts, severe weather
conditions and future climate.

The first reanalysis called NCEP/NCAR was
released in 1996. Since then, over 9000 publications
using its data cite the original paper [9] (6 Nov 2011).
During the past decade, more recent reanalysis
emerged with higher resolutions and improved
models [4, 5].

To obtain the data, researchers repeatedly
perform the same set of time-consuming operations
by manually selecting and downloading required
files. Moreover, they duplicate efforts of their
colleagues and encounter the same difficulties due to
the absence of intuitive climate data share and
visualization tool.

Even primitive climate data visualization is
labor-intensive, requires knowledge of format details,
distracts from the primary goals and delays results.

Visualization makes the greatest contribution
to data understanding. It explores the broader
bandwidth of information opposed to text and

numbers. With effective visualization, outliers and
patterns are easier to perceive what leads to new
insights and improved decisions [10].

Surprisingly, in spite of climate reanalysis
importance and popularity, tools to interactively
explore and visualize them still do not exist.

The main challenge behind this goal is to keep
vast amounts of available data on-line for all users
while providing real-time access to only a small
portion of it for a single client.

Climate Wikience is the first system in the
world enabling interactive 3D visualization and
analyzes of all available climate reanalysis data in
real-time. It is implemented as cloud service [11, 12].

ChronosServer is the backend of Climate
Wikience, responsible for the real-time data access by
thousands of concurrent clients. By real-time is
considered data retrieval without perceivable delay to
a human exploring it visually.

Climate Wikience partially implements the
Wikience Concept. Nowadays, no single research
team is able to explore all available data to it. One of
the main Wikience goals is to allow the widest
possible audience to do data science effectively and
intuitively in order to obtain more value from it.

Currently no straightforward solution exists.
Although available systems have powerful distributed
models, even the most appropriate of them, HBase
[12], solves at most a half of the problem due to
difficulties of dealing with sophisticated file formats.
At the best, HBase may be used to store a copy of
existing data rather than fully switching to it as a
storage layer. ChronosServer offers an additional
representation and access tier for existing data while
not altering their native formats.

SSN 1996-1588

Hayxosi npayi JonHTY

sunyck 14(188)

Cepia “Inpopmamuxa, kibepnemuxa 2011
ma 00uUCTI08ANbHA MeXHIKa ™

Reanalysis Archives
During the history of meteorological
observations, data were collected by different

instruments and have different character like point
measurements at ground stations and areal
observations by a satellite. In addition, they are
irregularly distributed in time and space, stored in
different formats, contain uncertainties, errors and
gaps. It is extremely difficult to use that data to obtain
a single picture of an atmospheric state [14, 15].

The purpose of a reanalysis archive is to
derive the most precise retrospective picture of
atmospheric states using all available data and
provide the result as time series of regular latitude-
longitude grids to simplify its usage. The time step
between successive grids and grid resolution are fixed
during the whole period. Each node of the grid is
assigned a value of a meteorological variable (fig 1).

Figure 1 — Mean sea level pressure regular grid with
isobars for 01/01/2003 00:00 UTC shown at 20° and
500 GPa intervals respectively. Circle sizes are
proportional to pressure values. Built in 3D with
Climate Wikience using AMIP/DOE Reanalysis 2

For example, AMIP/DOE Reanalysis 2 (R2)
spans several decades, from Ol January 1979 to
current date with 6 hour interval and contains over 80
variables. The grid resolution is 2.5° x 2.5° [16].

Climate reanalysis data are usually shipped in
NetCDF [17] or GRIB [18] formats. The grids for
each variable are stored in a sequence of separate files
partitioned by time. File names are prefixed by the
code name of the variable.

For example, each file in R2 stores yearly data
for one given variable. Thus, surface pressure is
stored in files named pres.sfc.1979.nc,
pres.sfc.1980.nc, ..., pres.sfc.2011.nc. ~ Where
“pres.sfc” denotes “surface pressure”, 1979 is the
year, and “.nc” is file extension for NetCDF format.

Data inside a file is compressed. NetCDF uses

simple compression technique. All grid values within
a given file are subtracted the constant called “add
offset” and divided to “scale factor”. To use the
values from NetCDF file, they must be multiplied by
scale factor and summed with add offset.

Besides the data, NetCDF files store metadata.
It includes actual data range, min and max values,
constants used for missing values and other important
characteristics. This information is easily computed
from original data. However, there are datasets where
metadata is rich and specific and, thus, vital for
correct data interpretation. For example, satellite
imagery may have metadata containing radiometer
calibration information. Hence, it is preferably to
preserve metadata within a storage system as is.

During visual data exploration, a researcher is
usually interested in a single grid at a time. A storage
system must have the ability to extract only one grid.

ChronosServer Architecture

A ChronosServer cluster consists of multiple
workers responsible for data storage and a single gate
with Internet connection. Clients interact with
ChronosServer through the gate via Internet channel.
Workers do not have direct Internet access (fig. 2).

s Chronos server..
Gate

Clients e
EDEOEDEOE{—. Internet ﬁ

Waorkers

Figure 2 — ChronosServer architecture

A single gate is used to coordinate data access,
manage data partitions and transfer data from workers
to clients. Although it may become a bottleneck in
data exchange, this design was chosen due to
constraints with available network addresses.
However, it is possible to have several gates if more
network addresses are available or router used.

ChronosServer (Chronos is Greek word for
time) partitions retrospective data across cluster
nodes by time attribute. A series of measurements
taken during a period of time with some interval is
common nowadays to many domains (recall R2 files
that already partitioned by year).

For the sake of clarity, later descriptions will
rely on R2 data organization for examples.

The dataset is a storage unit inside
ChronosServer representing the complete available
period for an R2 variable. A dataset may consist of

SSN 1996-1588 Hayxoei npayi JonHTY sunyck 14(188)
Cepia “Inpopmamuxa, kibepnemuxa 2011
ma obuucurosanvia mextika”
arbitrary number of partitions (files). Each partition CHRONOS GATE
stores data for a continuous time period. The volume DYNAMIC DATA
of a single partition is not fixed. —Worker pool
Partitions are replicated across several workers Worker Data
. > WORKER 1 r2.pressure.sfc[2002-2003]
for fault tolerance: Not preconﬁ.g.ured. number of 2.pressure.msi[2002-2003]
workers may contain the same partition (is called here
as variable replication rate). This may be useful for >| WORKER 2 r2.temperature.sfc[2001-2002]
. r2.pressure.msi[2003-2004]
newly arrived data which popularity is high for the
first time and decays further. STATIC DATA
. . . —Metadata
Datasets are organized in a hierarchy of hada —

. . Dataset name Description 1D
directories (fig. 3). All workers and the gate have the 12 temperature.sfc Reanalysis 2, Surface temperature |
same hierarchy of data directory on their local r2.pressure.ms| Eeana:vS@s 5 ;15# pressure 2

. . . r2.pressure.sfc eanalysis 4. surface pressure 3
filesystems. Thus, a dataset is identified by an P .
unambiguous pathname global to the whole cluster. A 5.5end info
worker stores only a subset of all dataset partitions. | and add to pool o
Each worker stores only a portion the whole CHRONOS WORKER 1 ;
ChronosServer directory namespace relevant to the “Dataset info storage— 3]
data it possesses. Usually directories are named Dataset name Time IDfs

3. Assign id

straightforward following the aliases of reanalysis
variables.

The gate keeps on its local hard drive the
complete hierarchy of directories for ChronosServer.
Instead of storing partitions, its directories may
optionally contain additional dataset descriptions, for
example, their full names (fig. 3). It may also store
rules for data processing before/after extraction or
sending the result like unpacking compressed data.

Workers are responsible for reading requested
data from a file for a given time snapshot. They do
not know what datasets are stored in files on their
local hard drives. The gate is not aware of total
number of workers in the cluster and total number of
partitions for a dataset.

The system is designed as fault tolerant and
does not require all workers to be permanently up.
Only the master must be a fault-protected machine to
maintain the overall service availability. By having a
single coordinating machine, sophisticated algorithms
for load balancing and data placement can be
performed. Thus, it is worth investing into one steady
node to benefit from better service.

The gate is unaware of partition locations
until a worker itself reports them to it. This is done
for better scalability and fault tolerance (fig. 3).

Upon startup workers scan their local
filesystem to find out what partitions and time periods
do they hold (1). Workers connect to the gate and
transmit the list of partitions they store (2). At this
point, the gate keeps this information in worker pool
— in-memory data structure that maps partitions to
their corresponding owners.

On a successful connection, the gate responses
to a worker by dataset ids to further reduce network
traffic as will be explained in the next section and
rules for dataset files processing (3).

r2.pressure.sfc 2002-2003
2

r2.pressure.msl_2002-2003 i

1.5can FILE
r2 SYSTEM

pressure

msl
2002.nc

sfc
2002.nc

2003.nc

and rules to

datasets

CHRONOS WORKER 2

2. Send info rDataset info storage————
and add to pool Dataset name Time 1D
r2.temperature.sfc 2001-2002 1
r2.pressure.msl 2003-2004 2
L
1.5can FILE
SYSTEM
pressure
ms| Dublicate data

Figure 3 — ChronosServer structure and worker

initialization phase

SSN 1996-1588 Hayxoei npayi JonHTY sunyck 14(188)
Cepia “Inpopmamuxa, kibepnemuxa 2011
ma obuucurosanvia mextika”
Instructions [7]
ChronosServer Query Execution ——— 4: h en:i:ed t
- Decode ata
ChronosServer is optimized for small — j-cache
(comparable to dataset size) concurrent random reads CHRONOS CLIENT 1

in real-time by thousands of clients.

The purpose of ChronosServer is to enable
real-time access to data stored in various formats
without their modification. It does not aim to build a
complete storage infrastructure to rely on in all needs.
For example, Climate Wikience uses document-
oriented database to store cyclone tracks while at the
same time ChronosServer enables it to manipulate
with reanalysis archives.

A client interacts with ChronosServer in a
query-response fashion. The queries are strings with
syntax similar to SQL. This is done for simplicity
since the clients are primarily GUI front ends with
direct interaction with humans, so that they could
clearly see and interact with the processes if needed.

Once a GUI client application — Climate
Wikience — starts up, it connects to the
ChronosServer cluster through the gate. After the
connection is established, it retrieves a list of
available datasets by issuing corresponding queries.

During user activity (zoom, pan, viewing time
or layer change), Climate Wikience automatically
determines required datasets.

The Client — Server interaction is outlined on
figure 4. Once time or spatial area is changed, GUI
tries to locate data for a dataset in local disk cache
(1). Since a usual research pattern is investigating the
same period and geographical area during a relatively
long time, it makes sense to cache the data in use.

On cache miss, GUI constructs query string
with required dataset and time for ChronosServer and
transfers the query (2).

A query looks like "SELECT DATA FROM
r2.pressure.msl WHERE TIME = 01.02.2003 18:00".
It will return R2 regular 2.5°%x2.5° latitude-longitude
grid values for mean sea level pressure for 2003 Feb
01, 18:00 UTC. Note, that "DATA" and "TIME" are
both reserved literals.

The gate receives and parses the query (3).
Once it locates workers with the required dataset
partition it selects the first of them and shuffles the
worker list for better load balance. Gate adds clients
to the pool (5) to refer it later and selects dataset id
(6) in order to exchange with integers instead of
strings to minimize network traffic.

The gate sends the query information to the
selected worker (7). It in turn converts id to dataset
path (8), finds the partition with given time and
directly reads data from the compressed file (9).

Notice, in addition to earlier observations, that
a data format usually exploits data peculiarities to
compress it efficiently. Reading compressed files
directly significantly reduces data storage costs.

2. SELECT DATA
FROM r2.pressure.msl
WHERE TIME = 01.02.2003 18:00

13. Send data
and instructions

INTERNET

4. Choose En —1
. - Parse query

CHRONOS GATE 12. Get client A
DYNAMIC DATA 5 agdciienttopool ¥
—Worker pool -Client pool—
Worker Data Client D
= WORKER 1 r2.pressure.sfc[2002-2003] CLIENT 1 8
r2.pressure.msl[2002-2003]
WORKER z ra2.temperature.sfc[2001-2002]
r2.pressure.msli[2003-2004]
STATIC DATA
—Metadat
Dataset name Description]
r2 temperature.sfc Reanalysis 2, Surface temperature 1
rr2.pressure.msl Reanalysis 2. M5SL pressure 2
r2.pressure.sfc Reanalysis 2. Surface pressure 3
6. Get M 7. Send
dataset id client ID 11. Send
dataset ID data, client 1D,
“tlme instructions

CHRONOS WORKER 1
-Dataset info storage——wv——

8. Get dataset |[Dataset name Time 1D

by id n r2_pressure.sfc 2002-2003 3
|| r2.pressure.msl 2002-2004 2

r2
pressure

msl
2002.nc

2003.nc

sfc
2002.nc

9. Get dataset
from file

2003.nc

=

10. Create instructions/
for dataset

Figure 4 — Client query processing

This paper also introduces “divided query
execution” technique to reduce ChronosServer load.
Only a portion of required operations are performed
on server to obtain ready to use data. Since most
scientific file formats store compressed data, they
require some preprocessing to unpack them after they
are read from file. The proposed architecture exploits
the opportunity of having desktop client application.

SSN 1996-1588

Hayxosi npayi JonHTY

sunyck 14(188)

Cepia “Inpopmamuxa, kibepnemuxa 2011
ma 00uUCTI08ANbHA MeXHIKa ™

Instead of applying scale offset and add factor
to retrieved data, a worker creates a script
(instructions) which client has to run in order to
unpack the data. It sends the instructions along with
scale factor and add offset values to the client through
the gate (11-13).

The client instructions engine interprets the
script generated by the worker (14). For small
portions of data these additional operations take a
very small amount of time (especially on a powerful
worker machine). However, for large number of users
this may become a serious issue. On the contrary, it is
not perceivable by a human since it takes only several
milliseconds to execute the script on client side.

Workers do not cache data since the whole
available time period of datasets is explored randomly
by users what means that all available data are in use
and cannot be cached neither in operating memory
nor on a gate hard drive.

ChronosServer Performance Evaluation

Worker, gate and client were implemented on
Java. Gate and Worker are multithreaded applications
and can scale to large number of clients.

The performance evaluation was carried out
using two setups.

The first one has 1 worker, 1 gate and 1, 2, 4,
32, and 128 concurrent clients. Both the gate and the
worker have one thread.

The second setup uses 32 threads at gate
handling client requests and 32 threads to
communicate with workers. Two workers running
with 8 threads both.

Worker nodes were populated by intact files of
R2. They are already partitioned by year.

Machine characteristics are presented in table
1. Workers use extent-based file system ext4fs. It
seeks very fast inside a file continuously located on
hard drive.

Table 1. Machine characteristics

OS RAM| Processor |Java ver.
Gate Cent OS|8 GB |Core 17, 8 1.6.0.27
6.0 cores, 3.46
Ghz
Worker |Ubuntu |1 GB |Intel Core 1.6.0.20
10.04 Quad 2
2.66GHz
Client Ubuntu |2 GB |AMD Athlon |1.6.0.26
10.10 II Dual-Core
P320 (2.1
GHz)

Workers are running on VM Ware 7.1 virtual
machines configured to have 1 GB of RAM and 2
processor cores.

The configurations of the virtual machines are

default. Nothing was tuned. Disk schedulers were not
used and even atime attribute was not removed from
the file system configuration.

The client and gate use Oracle JRE while the
workers use OpenJDK.

Gate, worker and client are connected via a
gigabit Ethernet network switch. The client machine
is a commodity notebook. It has 100 Mbit Ethernet
card while gate and worker have 1 Gbit built-in
Ethernet cards.

The ping statistics for sending 10 times by
20Kbytes of data between the worker and the gate has
zero packet loss. The round trip time
min/avg/max/mdev are 1.318/1.385/1.437/0.047 ms
correspondingly. The same ping operation for client-
gate communication yields min/avg/max/mdev of
round trip time equal to 3.629/3.649/3.676/0.049 ms.
Tests were performed when the network was idle.

A multithreaded application on the notebook
in turn starts 1, 2, 4, 32, or 128 thread bundles
simulating concurrent access of many clients. Each of
them connects to the gate on startup.

Each client thread waits the startup of the
others. After that, one minute is granted for all
threads in total during which they continuously
generate queries. A thread randomly chooses a
dataset among all available and random time within
it. It generates string query requesting data for a
single time moment of the chosen dataset (regular
grid in case of reanalysis data). A thread does not
issue a new query unless it receives a response from
the server and applies all required instructions that
come along with data. All random number generators
were using uniform distribution.

The full query execution time (later simply
query time) was measured which includes time from
generating query string for the gate to obtaining
unpacked data (table 2).

Two kinds of statistics were collected.

For each thread in a bundle, minimum,
maximum, average, median query execution time
were measured together with the number of queries
that a thread had time to execute during a minute
given to all threads (not a minute per each thread).
Due to space constraints, for each thread bundle only
summary statistics is outlined.

The median was calculated in all cases since
the longest queries are usually yielded by access
overheads to a particular partition for the first time.
To avoid it further, workers cache descriptors for
opened files. In general, a query is executed much
faster than an average.

The time to read a desired data slice from
NetCDF file is small due to the extent-based
filesystem.

For setup 1 (table 2) and 2 (setup 2) the values
are almost the same for each thread within a bundle
(+ 2 ms), except for 128-threads bundle. Thus, there
was no need to take an average, values for a random
thread from a bundle are shown.

SSN 1996-1588

Hayxosi npayi JonHTY

sunyck 14(188)

Cepia “Inpopmamuxa, kibepnemuxa 2011
ma 00uUCTI08ANbHA MeXHIKa ™

Table 2. Stages required to process a query and

corresponding components responsible for them

To get an idea of situation taking place for

128-threads bundle, figures 5 and 6 present dot
charts. The first one plots medium query execution
time for setup 1 (upper boxes) and setup 2 (lower
triangles) for each thread in 128-thread bundle.

620

570 +*

520

Stage Where
1 | Create query Client
2 | Pack query Client
3 | Transfer query: Client — Gate N/A
4 | Unpack query Gate
5 |Parse query Gate
6 | Choose worker Gate
7 |Create request Gate
8 | Pack request Gate
9 | Transfer req.: Gate — Worker N/A
10 | Unpack request Worker
11 |Extract data Worker
12 | Create response Worker
13 | Pack response Worker
14 | Transfer resp.: Worker — Gate N/A
15 | Unpack response from worker Gate
16 |Pack response for client Gate
17 | Transfer resp.: Gate — Client N/A
18 | Unpack response Client
19 | Accept response Client
However, 128-threads bundle exhausts

available CPU resources. Most time is wasted for a
thread queuing for its time quantum to run, neither
performing operations nor even on waiting for data to
arrive. Thus, for 128-threads bundle tables 3 and 5

contain average numbers.

Table 3. Statistics for thread bundles (setup 1)

Min | Max | Avg. | Med. | Queries
1 7 46 9 9 6101
2 7 102 12 12 4756

4 90 467 160 153 379

32 90 467 160 153 379

128 | 274 1577 | 637 568 95

Table 4. Statistics for thread bundles (setup 2)

Min | Max | Avg. | Med. | Queries
1 3 34 7 9 7792
2 3 21 9 9 6487
4 3 30 14 13 4232

32 60 162 107 106 560

128 | 150 1302 | 434 377 139

A X %
470 - 2 * &
% La % a A
A A A, A
420 o aA A a s A% A
A, 7X R R %, a ® s &)
A, 2 a AT, & A A A
L e NV Y — CHPERE SN Y L
s, Aa RO N A A AAA“ A A
47a a2t A A, oata 2% aa
A A Ad, A a8
320 ary em— '
A
A
270 T T T T T T T)
0 16 32 48 64 80 96 112 128

Figure 5 — Medium query execution time for 128
threads from setups 1 and 2

The second one plots the number of queries

for each of 128 threads which they managed to
perform in a minute time frame for setup 1 (lower
boxes) and setup 2 (upper circles).

Figure 6 — Number of queries performed by128
threads from setups 1 and 2

gate
cons

Although the number of serving threads at the
does influence the overall performance,
iderable spread can be seen on both plots. Thus,

for 128 threads the results may not be representative
due to the bottleneck on client side. At the same time,
ChronosServer was only slightly loaded.

will
will

In case of real world production, the requests
come from diverse network addresses and clients
not be unnaturally overloaded.

SSN 1996-1588

Hayxosi npayi JonHTY

sunyck 14(188)

Cepia “Inpopmamuxa, kibepnemuxa 2011
ma 00uUCTI08ANbHA MeXHIKa ™

The second type of runtime information is the
detailed execution time per stage collected on all
system components, the gate, worker and client for a
single query. Six (6) distinct queries for each setup
were selected (tables 5 and 6). The first three are
measured for bundle with one thread and the second
for randomly chosen thread out of 128-thread bundle.
The first query was the fastest, the second was the
worst, while the third represents a typical case
(median) of all queries for a selected thread.

Table 5. Query execution time per stage, ms (setup 1)

Stage 1 client 128 clients
min | max | med | min | max | med
1 |01 |05 |0.1 |13 |48 22
2 |0.1 |05 |03 |16 |55 27
3 106 (20 |07 |8 116 |20
4 102 (2.0 |03 |11 |43 18
5 104 |20 |06 |13 |110 |24
6 |02 |1.0 |04 |23 |89 27
7 102 |15 |02 |6 43 15
8 (0.1 |20 (0.2 |10 |67 31
9 101 |50 |03 |12 |88 20
10 |02 2.0 |05 |14 |43 35
11 (1.3 |45 |15 |15 |99 21
12 |03 |25 |03 |49 |57 50
13 |04 (2.0 (0.6 (27 |107 |27
14 |02 |35 |03 |13 |86 26
15 |04 |50 |05 |26 |105 |45
16 |04 2.0 (04 (35 |112 |54
17 |05 |50 |05 |16 [127 |48
18 1.0 |15 |1.1 |37 |88 45
19 (03 |15 |02 |11 |40 28

Total | 7 46 9 | 355 | 1523 | 583

Presented values justify the fact that in a 128-
thread bundle the most of time a thread is just not
able to run at all. In table 5, actual time (Act.) was
obtained by summing up all values for each stage
separately. Measured time (Meas.) was calculated by
the thread itself from the beginning of query
(generating string) to its completion (obtaining data).
For a typical query (median) this difference reaches
277 ms (363—86 ms).

Pie charts on figures 7, 8 and 9 form an idea of
how much time it costs for the gate, a worker and a
client thread to perform a typical query. Median
values were used for all plots.

For setup 2, the gate speed has risen in 10,7
times (214/20) compared to setup 1 (recall that 32
client threads were used for gate in setup 2 and only 1
thread for setup 1). For a single client thread the
query execution time has also dropped. This is caused
by using 2 workers in setup 2.

Workers evenly share the portion of disk /O
required for query execution.

Approximately 20 Kbytes per query are
transferred (the size of a single R2 grid).

Table 6. Query execution time per stage, ms (setup 2)

Stage 1 client 128 clients

min | max | med | min | max | med

1 0.1 |02 |02 |20 |2 2

2 0.1 {02 |0.1 |15 |3 2

3 102 |08 (02 (20 |7 2

4 |01 (02 |02 |20 |3 2

5 102 |23 |03 |05 |6 2

6 |01 |04 |0.1 |05 |3 1

7 101 |03 |0.1 |05 |5 1

8 (0.1 |04 (02 |1.0 |3 2

9 0.1 |02 |02 |05 |3 2

10 0.1 |04 |02 |1.0 |3 3

11 103 (3.6 |13 |45 |16 8

12 0.1 (0.2 |02 [0.5 |2 1

13 0.1 (0.7 |0.1 |15 |5 2

14 0.1 (1.2 |03 [1.0 |5 1

15 103 (3.1 [0.6 |50 |45 10

16 (0.2 |05 |02 |20 |3 2

17 103 (33 |14 (35 |14 10

18 0.3 (3.8 |23 |40 |81 25

19 0.1 (1.2 [0.8 [0.5 |59 8
Act. 3 23 9 34 | 268 | 86
Meas. | 3 23 9 | 162 | 1217 | 363

Client 1,70
24%
Worker 2,90 /-
40% :
]
~ Gate 2,60
36%

Figure 7 — Setup 1, 1 thread on client

SSN 1996-1588

Hayxosi npayi JonHTY

sunyck 14(188)

Cepia “Inpopmamuxa, kibepnemuxa 2011
ma 00uUCTI08ANbHA MeXHIKa ™

Client 122,00
26%

Worker
133,00 28% 7:ititi

S ——

Gate 214,00
46%
Figure 8 — Setup 1, 128 client threads

Worker
14,00 20%

Client 37,00
] 52%

e

Gate 20,00
28%]

~

Figure 9 — Setup 2, 128 clients threads

According to median value for 1 thread (table
6) it is achieved 17,36 MBits/sec (1000%20/9/1024*8)
transfer rate from ChronosServer to client (query
transfer rate) compared to the maximum available
network bandwidth of 100 MBits/sec. It transfers
0.16MBits (20/1024*8) in 9 ms while the limit is
0.90MBits in 9 ms (100/1000*9).

It is not completely correct to compare query
transfer rate and the maximum network bandwidth.
Before a client receives a response from gate, data are
read from disk by worker and go through the gate
which in turn retransmits the data to the client
duplicating network 1/O.

However, the overall results show that
response times are suitable for real-time serving of
thousands of concurrent users. This is justified by two
key assumptions.

First, the data is delivered to human users.
Once they obtain its visualization, they usually study
it via interactive GUI. This takes for a human at least
several seconds or even minutes if not days for some
cases. Thus, some time is expected to pass after a
GUI will issue next query. In the synthetic
experimental setups, clients were generating queries
uninterruptedly on after another without any delays.

Second, a researcher repeatedly explores the
same region or time interval to obtain results. Thus,
frequently used data quickly become cached on client
side. Physical capabilities of a researcher will allow
him/her to embrace during a day only the portion of
data that can mostly reside on local hard drive.

Related Work

The techniques for storing large data on a
computer cluster may be categorized into distributed
file systems, clusters of relational database
management systems (RDBMS) and document-
oriented databases.

All current systems require the data to be
partitioned (in spite of the presence of their natural
partitioning), extracted from native formats, and
imported into new storage model. Metadata must be
maintained separately in a transformed way.

Google File System [19] was designed to run
on thousands of commodity machines with scalability
and fault-tolerance in mind. It stores files broken on
chunks which are distributed among chunkservers. It
exploits the single master storing in-memory chunk
locations reported by chunkservers on startup.

However, ChronosServer has little in common
with GFS since it has directly opposite goals. GFS
was designed for batch processing of large data
volumes rather than executing thousands of small
real-time tasks. It suffers from high latency of data
access [20].

HBase [13] is open-source implementation of
Google Big Table [21] and is likely the most
appropriate solution to the Climate Wikience
problem. Because reanalysis data is never modified
by a client, the proposed solution is much simpler and
less resource demanding. In addition, it can easily
incorporate data processing capabilities specific to
research needs closer to data and does not require
format convertions.

Hadoop [22] with its HBase and other
powerful systems is a rich ecosystem ranging from
storage to data processing frameworks to cluster
monitoring tools. However, many organizations
already have vast amounts of accumulated data,
human experience and tools with their specific data
processing tasks. In addition, they have many other
licensed third party software working with files
storing their data in diverse formats. Switching to a
new infrastructure may be painful, error-prone and
require considerable personnel efforts and time.

ChronosServer is designed to offer additional
functionality to existing infrastructure. Certainly, a
large body of tasks is waiting for HBase in many
currently operational infrastructures. It is up to the
personnel to decide which system to use depending
on the goals they are trying to accomplish.

The RNCEP package [23] for open-source R-
statistics system [24] is not designed to store large
amounts of data. However, it enables users to select
date and variable name for NCEP Reanalysis 1 or 2 in
R command prompt. It automatically downloads
reanalysis files via Internet from NCEP servers via
OpenDAP protocol. All 30MB yearly file is retrieved
even if only one snapshot is asked and, certainly, not
in real-time. User has to remove unnecessary grids as
well as issue other commands to view data in 2D.

SSN 1996-1588

Hayxosi npayi JonHTY

sunyck 14(188)

Cepia “Inpopmamuxa, kibepnemuxa 2011
ma 00uUCTI08ANbHA MeXHIKa ™

Lustre [25] is a very powerful fully POSIX-
compliant parallel file system. It runs on a
considerable number of clusters from the Top 500 list
[26]. It supports RAIDs, parallel I/O and tunes the
operating system up to the kernel modification. It
partitions large files across cluster nodes.

However, ChronosServer does not aim to
implement a file system nor Climate Wikience needs
Lustre functionality either. Lustre yields large
administration overheads once deployed on a cluster.
Notice, however, that it would anyway require a
software that reads diverse file formats, thus, Lustre
would be not only complicated, but also an
incomplete solution.

Document oriented databases offer facilities to
store large binary objects inside the database. They
also offer sharding and replication. For example,
MongoDB [27] uses GridFS [28]. It splits large
objects into small fixed-sized chunks, usually 256k in
size. Each chunk is stored as a separate document.

Again, one need to invent facilities to preserve
metadata and import data into MongoDB from their
native formats. In addition, breaking large data into
small chunks degrades the performance and
introduces storage penalties. Increasing chunk size
will make impossible reading a small portion of data
from it.

Memory-based distributed systems [29, 30]
are not applicable to Climate Wikience problem since
the whole available data is expected to be intensively
used. This prohibits its in-memory caching.

Parallel databases have real-time response
times [31] and some of them have very good
scalability [32]. However, database systems are
inherently designed for effective operations on small
data values. It is much more preferable to keep large
data files outside a database [33].

Another approach is to represent the data as
raster and use BLOB (Binary Large Object) type to
store them inside an RDBMS.

Rasdaman (raster data manager) [34] is the
extension to PostgreSQL which partitions a given
raster on tiles and stores them as BLOBs. It
implements all raster operations itself together with
spatial indexing. There is a commercial project [35]
aiming to scale Rasdaman. This requires installing
PostgreSQL on each cluster node.

However, scaling Rasdaman will be not a
trivial task. First, they will have to solve the problem
of efficient management of dozens of autonomous
PostgreSQL instances. Second, load balancing is hard
to implement since it will require individual tiles
(BLOBs) residing inside RDBMS to be moved
between cluster nodes. The problem is complicated
due to the fact that PostgreSQL does not have any
scaling tools in contrast even to MySQL [31].

Another major drawback of this approach is
that it is impossible to retrieve a portion of a BLOB.
Moreover, in PostgreSQL (and, possibly other
databases either) it is not possible to store large
objects as a whole in a single row. RDBMS breaks
large fields into several rows. In PostgreSQL this
technique is called TOAST (or "the best thing since
sliced bread") [36]. This means that a BLOB may not
be stored continuously in a table file neither retrieved
in a single go.

There were discussions [33] which approach is
better for storing large binary objects: BLOBs at
databases or files. The main pros for RDBMS are
sophisticated indexing schemes and join algorithms.
However, for large binary data types it is not justified
since there are no facilities to scale them. Hence, all
previous work in RDBMS research field will be lost.

Conclusions and Further Work

ChronosServer enables real-time delivery of
vast amounts of data stored in various formats to
thousands of concurrent clients. Using it as a
backend, Climate Wikience made possible the
analyzes together with interactive 3D exploration of
all available climate reanalysis archives to wide
audience which is not limited only to a research
community alone.

The performance evaluation of ChronosServer
reveals that it can withstand the expected number of
clients maintaining real-time response rates.

It is straightforward to use ChronosServer to
enable real-time access for numerical models output,
measurements from distributed mobile and sensor
networks as well as many other important
retrospective data.

ChronosServer still requires some additional
research concerning load balance and security. It is
also beneficial to enable built-in computations during
data retrieval, for example, summary statistics.

The author believes that the system will
advance the international research community in
understanding of climate variability and change as
well as other important domains.

The Climate Wikience is freely available for
download at wikience.donntu.edu.ua.

Acknowledgements

This work was supported by Award No.
UKM1-2973-D0O-09 of the U.S. Civilian Research &
Development Foundation (CRDF). Any opinions,
findings and conclusions or recommendations
expressed in this material are those of the authors and
do not necessarily reflect the views of CRDF.

SSN 1996-1588 Hayxoei npayi JonHTY sunyck 14(188)
Cepia “Inpopmamuxa, kibepnemuxa 2011
ma obuucurosanvia mextika”

Literature

[1] Kalnay et al., The NCEP/NCAR 40-year reanalysis project, BAMS, 77, 437-470, 1996.

[2] NCEP-DEO AMIP-II Reanalysis (R-2): M. Kanamitsu, W. Ebisuzaki, J. Woollen, S-K Yang, J.J.
Hnilo, M. Fiorino, and G. L. Potter. 1631-1643, Nov 2002, Bul. of the Atmos. Met. Soc.

[3] Uppala S. M. et al, The ERA-40 re-analysis, Q. J. R. Meteorol. Soc. (2005), 131, pp. 2961-3012.

[4] Compo G.P. et al., The Twentieth Century Reanalysis Project, Q. J. R. Meteorol. Soc. 137:128,
January, 2011 Part A.

[5] Saha S. et al, The NCEP Climate Forecast System Reanalysis, BAMS, 1015-1057, 2011.

[7] Hannachi A., Awad A., Ammar K. Climatology and classification of Spring Saharan cyclone
tracks, Clim. Dyn., (37) 473491, 2011.

[8] Murray, R. J., and I. Simmonds, A numerical scheme for tracking cyclone centres from digital data.
Part I: Development and operation of the scheme. Australian Meteorological Magazine, 39, 155-166, 1991.

[9] Google Academy [Electronic resource]
http://scholar.google.com.ua/scholar?cites=14652521284756584733&as_sdt=2005&sciodt=0,5&hl=ru

[10] Introduction to Data Mining and Knowledge Discovery, Third Edition. Two Crows Corporation.
[Electronic resource] http://www.twocrows.com/intro-dm.pdf

[11] Rodriges Zalipynis R.A., Zapletin E.A., Averin G.V. The Wikience: Community Data Science.
Concept and Implementation. Proceedings of the ICT-2011: Informatics and Computer Technologies,
International Scientific-Technical Conference of Students, Postgraduate Students and Young Scientists,
Donetsk, November 22-23, 2011.

[12] Climate Wikience [Electronic resource] http://wikience.donntu.edu.ua

[13] Apache HBase [Electronic resource] http://hbase.apache.org/

[14] Rodriges Zalipynis R.A. Data and data mining methods for natural environment research.
// System analysis and information technology in environmental and social sciences, Donetsk National
Technical University, Vol. 1, 2011. — p. 94-107.

[15] Kalnay E. Atmospheric modeling, data assimilation and predictability. — Cambridge University
Press, 2003. — 369 p.

[16] NCEP-DOE AMIP-II Reanalysis (AKA Reanalysis 2) [Electronic resource]
http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html

[17] Unidata | NetCDF [Electronic resource] http://www.unidata.ucar.edu/software/netcdf/

[18] GRIB.US > Home [Electronic resource] http://www.grib.us/

[19] Ghemawat S. et al. The Google File System. SOSP’03, Bolton Landing, New York, USA, 2003.

[20] Bajda-Pawlikowski K. et al Efcient Processing of Data Warehousing Queries in a Split Execution
Environment, SIGMODI11, Junel2-16, 2011, Athens, Greece.

[21] Chang F. et al Bigtable: A Distributed Storage System for Structured Data, OSDI 2006.

[22] Cloudera Hadoop Distribution [Electronic resource] http://www.cloudera.com/hadoop/

[23] Kemp, M.U., van Loon, E.E., Shamoun-Baranes, J.,and Bouten,W. RNCEP: global weather and
climate data at your fingertips. Methods in Ecology and Evolution, 2011.

[24] R Development Core Team, R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna. [Electronic resource] http://www.r-project.org/

[25] Schwan P. Lustre: Building a File System for 1,000-node Clusters. Proceedings of the Linux
Symposium. — Ontario, Canada, 23-26 July 2003, p. 380-386.

[26] Home | TOP500 Supercomputing Sites [Electronic resource] http://top500.org/

[27] MongoDB [Electronic resource] http://www.mongodb.org/

[28] GridFS Specification — MongoDB [Electronic resource]

http://www.mongodb.org/display/DOCS/GridFS+Specification
29] Redis [Electronic resource] http://redis.io/
30] Membase [Electronic resource] http://www.couchbase.org/membase
31] MySQL Cluster [Electronic resource] http://www.mysql.com/products/cluster/
32] Vertica [Electronic resource] http://www.vertica.com/

[33] Sears R., Ingen C., Gray J. To BLOB or Not To BLOB: Large Object Storage in a Database or a
Filesystem, Technical Report MSR-TR-2006-45, 2006.

[34] The rasdaman raster array database [Electronic resource] http://rasdaman.eecs.jacobs-
university.de/trac/rasdaman

[35] Tera-Scale Image Processing | Jacobs University [Electronic resource] http://www.jacobs-
university.de/lsis/projects/TeraPro

[36] PostgreSQL: Documentation: Manuals: PostgreSQL 8.3: TOAST [Electronic resource]

http://www.postgresql.org/docs/8.3/static/storage-toast.html

—

Haoitiuna 0o peoxonezii 08.10.2011

SSN 1996-1588

Hayxosi npayi JonHTY

sunyck 14(188)

Cepia “Inpopmamuxa, kibepnemuxa 2011
ma 00uUCTI08ANbHA MeXHIKa ™

POAPUT'EC 3AJIEIIMHOC P.A.
Jonerxkwmii HaIMOHAJIbHBIN
YHHUBEPCUTET

TEXHUYECKUH

ChronosServer: moctynm B pealbHOM BpeMeHH
THICHY OHOBPEeMeHHBIX KJIMEHTOB K
"HaTUBHOMY"' MHOroTepadaiTHOMYy
PeTPOCTIeKTHBHOMY XPAaHHJIMIILY JAHHBIX

ChronosServer paboTaer Ha KOMIBIOTEPHOM
KJjlactepe, KOTOPBIM IIOCTPOEH Ha 000pYyIOBaHHUU
LIMPOKOTrO IOTpeOJeHns W 00JalaeT CBOMCTBAMU
MacuITabupyeMOCTH, BBICOKOW JIOCTYMHOCTH |
orkazoycroiunBocti. OH CO3[a€T Ha OCHOBE YXKe
CYIICCTBYIOIIUX OONBIIMX OOBEMOB JaHHBIX
JICATENbHBIA ~ WHTEJUICKTYyAlbHBI OPOAYKT HE
usMensst ucxomuele ¢aimel. ChronosServer
obHapyxuBaer ¢ailmel Ha y3nax Kiacrepa,
AHAJIM3UPYET ux CTPYKTYpPY u MpeaoCTaBJIACT
HezaBHCHMYIO OT (opmara SQL-mogobHy0 Monens
3aMpocoB JUIs JIOCTynma K HX copaepxuMomy. OH
CMOCOOCH HAMPsMYI0 YWTAaTh CXKaThle IaHHBIC W3
pasnuunbix ¢opmaros, Brimodas NetCDF, GeoTIFF,
GRIB, HDF u wmHOrux Apyrux. OTO TOJHOCTHIO
cOXpaHseT MeTaJaHHble, XpaHsmuecs B (aiine, B
OPUIMHAJBHOM BHZAE, YTO HEOOXOIMMO I MX
KOPPEKTHOH HHTEpIpeTanuu U o0paboTKu ApYrum
IporpaMMHbBIM ~ obecrieuenueM. HoBble naHHbIE
JO0ABIISIOTCS B cUCTeMY Tpo3pauHbiM plug-and-play
0o0pa3oM NPOCTHIM KOIMPOBAHHMEM HX Ha Yy3el

KJacrepa, COKparas 3aTpaThl Ha
a/IMUHHCTPUPOBAHUE. 910 MO3BOJISIET
CYIIECTBYIOLIEMY IIPOrPaMMHOMY OOECIIEUEHHIO,

Hanpumep, I'MIC cucremam nub0 CTaTUCTUYECKUM
[aKeTaM HampsAMYyI0 OIEepHpoBaTh ¢ (ainamy,
Kotophle ucnonb3ytorcs ChronosServer, a Takke He
U3MEHATh CTapble KOABI TEHEpalMd JaHHBIX.
ChronosServer coxpaHsieT AeHCTBYIOLIYIO HA JTAHHBIN
MOMEHT HH(QPACTPYKTypy HEW3MEHHOH, wu3beras
OoJe3HEHHbIE, TPYJOEMKHE H IIOJBEP)KCHHbIE
ommrOKaM TPoIeAypsl KOHBEPTAINH (ailfioB TaHHBIX,
NPEeNOCTaBIsisl B TO K€ BpPeMs JOIOJHUTENBHBIC
BO3MOXKHOCTH JUISl KX aHAJIU3a.

XpaHuauile JAaHHBIX, JOCTYN B PpeajJbHOM
Bpemenu, ¢opmarsl (dailiioB, MeTaJgaHHbIe,
HeM3MeHHasi JelicTByomass HHPPaCTPyKTypa,

cTapbie KOJbI

PLEASE, CITE AS:

POJAPITEC 3AJIITIUHIC P.A.
JloHebKuii HalliOHAIPHUN TEXHIYHUHA YHIBEPCHTET

ChronosServer: 10cTyn y peajbHOMY 4aci THCSY
OHOYACHHX KJIi€HTIB hi (1} "HaTHBHOTO"
O0araTorepadaiiTHOr0 peTPOCHEKTHBHOI0 CXOBHIIA
JaHUX

ChronosServer npaiifoe Ha KOMITIOTEPHOMY KJIacTepi,
Akuii moOyJqoBaHO Ha oONajgHaHI IMPOKOro
CHOXHTKY Ta MAa€ BJIACTUBOCTI MacCIITaOOBaHOCTI,
BHUCOKOI JIOCTYIIHOCTI Ta BiJIMOBOCTIHKOCTi. BiH
CTBOPIOE Ha OCHOBI B)KE ICHYIOYHX BEIMKHX 00'€MiB
JAaHUX [SUTbHAH IHTENEKTyalbHUH TIPOAYKT HE
3MiHOIOUM BXimHI (Qaitmu. ChronosServer BHSBIsE
¢daitnn Ha By3Nmax KiacTepy, aHali3ye iXHIO
CTPYKTYpy Ta HaJae He3alexHy Bix ¢opmarty SQL-
MoAIOHy MOJeNb 3aluTiB ISl JOCTYIy JI0 iXHBOI'O
BMicTy. BiH 371aTeH HanpsMy 4uTaTH CTHCHI AaHi 3
pizHux ¢opmaris, Brmoyaroun NetCDF, GeoTIFF,
GRIB, HDF Tta o6ararbox inmmx. Ile mMmoOBHICTIO
30epirae MeTajaHi, Aki 3HaxomaThca y Gaitm y
OpHT'HAJIBHOMY BHUIJISIZ, IO HEOOXIJAHO VISt TXHBOI
KOpPEeKTHOi iHTepmperanii Ta OOpOOKHM 1HIIMM
nporpaMHuM 3a0e3nedueHHsM. HoBi naHi JomaroTbes
y cucremy mpozopum plug-and-play meromom y
BUIJISII MPOCTOrO KOMIIOBAHHS X HA BY30J1 KJacTepy,
IO 3MEHINYE 3aTpath Ha ajamiHictpyBaHHs. lle
JI03BOJISIE ICHYIOUOMY MPOrpaMHOMY 3a0e3le4eHHIO,
Hampukian, [IC cucremam abo CTaTHCTHYHUM
MaKeraM HampsMy onepysaTu 3 (aimamu, ski
BuKopucToBylOThcsi ChronosServer, a Takox He
MoaugikyBaTH crapi KOIM TeHepamii JaHuX.
ChronosServer 30epirae nirouy Ha JaHUH MOMEHT
iHppacTpyKTypy HE3MIHHOIO, 3anobirarouu
TPYIOMICTKI Ta TiIAaHl TOMHUIKAM IPOLENypH
KoHBepTamii (aiifiB JaHWX, HaJaroud y TOH caMuit
4ac TOAATKOBI MOXIIMBOCTI /JIs IXHBOTO aHAMI3y.

CxoBullle AaHHX, JOCTYN Yy PpeajJibHOMY 4aci,
dopmatn ¢aiiiB, MeTagani, He3MiHHa Jil0ua
iHgpacTpyKTypa, cTapi koau

Rodriges Zalipynis R.A. ChronosServer: real-time access to “native” multi-terabyte retrospective data
warehouse by thousands of concurrent clients. Informatics, cybernetics and computer engineering, pp. 151—

161. Vol. 14 (188), Donetsk, DonNTU, 2011.

