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ChronosServer: real-time access to “native” multi-terabyte retrospective data 

warehouse by thousands of concurrent clients 

ChronosServer runs on a cluster of commodity hardware and possesses scalability, high availability, and 

fault tolerance properties. It turns vast amounts of already existing data into actionable intelligence with 

no changes to the source data files. ChronosServer discovers files on cluster nodes, analyses their 

structure, and provides format independent SQL-like query model to access their contents. It is capable to 

read compressed data directly in various formats, including NetCDF, GeoTIFF, GRIB, HDF and many 

others. This entirely preserves original file metadata as is, vital for its correct interpretation and 

processing by other software. New data added to the system in a seamless plug-and-play fashion by 

simple copying it to a cluster node reducing administration overheads. This allows existing software like 

GIS or statistical packages to operate on files in use by ChronosServer as well as unmodified legacy code 

to generate data for it. ChronosServer preserves operational infrastructure intact avoiding painful, time-

consuming and error-prone data conversions while offering additional opportunities for data analysis. 

Data warehouse, real-time access, file formats, metadata, intact operational infrastructure, legacy code 

 
Introduction 

The modern world experiences explosive 

growth of data volumes generated at enormous rates. 

Many organizations have accumulated and continue 

collect data in diverse formats. There is software 

capable to analyze separate data files. However, there 

remain challenges, including interactive visualization, 

requiring real-time data access. 

The need for the approach is demonstrated on 

the most largely used data for climate research – 
reanalysis archives [1, 2, 3, 4, 5]. Their applications 

vary from deriving simple warming trends to cyclone 

tracking [7, 8]. These data provide unprecedented 

opportunities to better understand and, hence, prepare 

and adapt to storm events, droughts, severe weather 

conditions and future climate.  

The first reanalysis called NCEP/NCAR was 

released in 1996. Since then, over 9000 publications 

using its data cite the original paper [9] (6 Nov 2011). 

During the past decade, more recent reanalysis 

emerged with higher resolutions and improved 

models [4, 5]. 
To obtain the data, researchers repeatedly 

perform the same set of time-consuming operations 

by manually selecting and downloading required 

files. Moreover, they duplicate efforts of their 

colleagues and encounter the same difficulties due to 

the absence of intuitive climate data share and 

visualization tool.  

Even primitive climate data visualization is 

labor-intensive, requires knowledge of format details, 

distracts from the primary goals and delays results.  

Visualization makes the greatest contribution 
to data understanding. It explores the broader 

bandwidth of information opposed to text and 

numbers. With effective visualization, outliers and 

patterns are easier to perceive what leads to new 

insights and improved decisions [10]. 

Surprisingly, in spite of climate reanalysis 

importance and popularity, tools to interactively 

explore and visualize them still do not exist. 

The main challenge behind this goal is to keep 

vast amounts of available data on-line for all users 

while providing real-time access to only a small 

portion of it for a single client. 
Climate Wikience is the first system in the 

world enabling interactive 3D visualization and 

analyzes of all available climate reanalysis data in 

real-time. It is implemented as cloud service [11, 12]. 

ChronosServer is the backend of Climate 

Wikience, responsible for the real-time data access by 

thousands of concurrent clients. By real-time is 

considered data retrieval without perceivable delay to 

a human exploring it visually. 

Climate Wikience partially implements the 

Wikience Concept. Nowadays, no single research 

team is able to explore all available data to it. One of 
the main Wikience goals is to allow the widest 

possible audience to do data science effectively and 

intuitively in order to obtain more value from it.  

Currently no straightforward solution exists. 

Although available systems have powerful distributed 

models, even the most appropriate of them, HBase 

[12], solves at most a half of the problem due to 

difficulties of dealing with sophisticated file formats. 

At the best, HBase may be used to store a copy of 

existing data rather than fully switching to it as a 

storage layer. ChronosServer offers an additional 
representation and access tier for existing data while 

not altering their native formats. 
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Reanalysis Archives  

During the history of meteorological 

observations, data were collected by different 

instruments and have different character like point 

measurements at ground stations and areal 

observations by a satellite. In addition, they are 

irregularly distributed in time and space, stored in 
different formats, contain uncertainties, errors and 

gaps. It is extremely difficult to use that data to obtain 

a single picture of an atmospheric state [14, 15]. 

The purpose of a reanalysis archive is to 

derive the most precise retrospective picture of 

atmospheric states using all available data and 

provide the result as time series of regular latitude-

longitude grids to simplify its usage. The time step 

between successive grids and grid resolution are fixed 

during the whole period. Each node of the grid is 

assigned a value of a meteorological variable (fig 1). 
 

 
Figure 1 – Mean sea level pressure regular grid with 

isobars for 01/01/2003 00:00 UTC shown at 20° and 

500 GPa intervals respectively. Circle sizes are 

proportional to pressure values. Built in 3D with 

Climate Wikience using AMIP/DOE Reanalysis 2 

 

For example, AMIP/DOE Reanalysis 2 (R2) 

spans several decades, from 01 January 1979 to 

current date with 6 hour interval and contains over 80 

variables. The grid resolution is 2.5° × 2.5° [16].  

Climate reanalysis data are usually shipped in 

NetCDF [17] or GRIB [18] formats. The grids for 
each variable are stored in a sequence of separate files 

partitioned by time. File names are prefixed by the 

code name of the variable.  

For example, each file in R2 stores yearly data 

for one given variable. Thus, surface pressure is 

stored in files named pres.sfc.1979.nc, 

pres.sfc.1980.nc, …, pres.sfc.2011.nc. Where 

“pres.sfc” denotes “surface pressure”, 1979 is the 

year, and “.nc” is file extension for NetCDF format. 

Data inside a file is compressed. NetCDF uses 

simple compression technique. All grid values within 

a given file are subtracted the constant called “add 

offset” and divided to “scale factor”. To use the 

values from NetCDF file, they must be multiplied by 

scale factor and summed with add offset.  

Besides the data, NetCDF files store metadata. 

It includes actual data range, min and max values, 
constants used for missing values and other important 

characteristics. This information is easily computed 

from original data. However, there are datasets where 

metadata is rich and specific and, thus, vital for 

correct data interpretation. For example, satellite 

imagery may have metadata containing radiometer 

calibration information. Hence, it is preferably to 

preserve metadata within a storage system as is.  

During visual data exploration, a researcher is 

usually interested in a single grid at a time. A storage 

system must have the ability to extract only one grid. 

ChronosServer Architecture 

A ChronosServer cluster consists of multiple 

workers responsible for data storage and a single gate 

with Internet connection. Clients interact with 

ChronosServer through the gate via Internet channel. 

Workers do not have direct Internet access (fig. 2). 

 

 
 

Figure 2 – ChronosServer architecture 

 

A single gate is used to coordinate data access, 

manage data partitions and transfer data from workers 

to clients. Although it may become a bottleneck in 

data exchange, this design was chosen due to 
constraints with available network addresses. 

However, it is possible to have several gates if more 

network addresses are available or router used. 

ChronosServer (Chronos is Greek word for 

time) partitions retrospective data across cluster 

nodes by time attribute. A series of measurements 

taken during a period of time with some interval is 

common nowadays to many domains (recall R2 files 

that already partitioned by year). 

For the sake of clarity, later descriptions will 

rely on R2 data organization for examples. 

The dataset is a storage unit inside 
ChronosServer representing the complete available 

period for an R2 variable. A dataset may consist of 
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arbitrary number of partitions (files). Each partition 

stores data for a continuous time period. The volume 

of a single partition is not fixed. 

Partitions are replicated across several workers 

for fault-tolerance. Not preconfigured number of 

workers may contain the same partition (is called here 

as variable replication rate). This may be useful for 
newly arrived data which popularity is high for the 

first time and decays further.  

Datasets are organized in a hierarchy of 

directories (fig. 3). All workers and the gate have the 

same hierarchy of data directory on their local 

filesystems. Thus, a dataset is identified by an 

unambiguous pathname global to the whole cluster. A 

worker stores only a subset of all dataset partitions. 

Each worker stores only a portion the whole 

ChronosServer directory namespace relevant to the 

data it possesses. Usually directories are named 
straightforward following the aliases of reanalysis 

variables. 

The gate keeps on its local hard drive the 

complete hierarchy of directories for ChronosServer. 

Instead of storing partitions, its directories may 

optionally contain additional dataset descriptions, for 

example, their full names (fig. 3). It may also store 

rules for data processing before/after extraction or 

sending the result like unpacking compressed data. 

Workers are responsible for reading requested 

data from a file for a given time snapshot. They do 
not know what datasets are stored in files on their 

local hard drives. The gate is not aware of total 

number of workers in the cluster and total number of 

partitions for a dataset.  

The system is designed as fault tolerant and 

does not require all workers to be permanently up.  

Only the master must be a fault-protected machine to 

maintain the overall service availability. By having a 

single coordinating machine, sophisticated algorithms 

for load balancing and data placement can be 

performed. Thus, it is worth investing into one steady 

node to benefit from better service. 
 The gate is unaware of partition locations 

until a worker itself reports them to it. This is done 

for better scalability and fault tolerance (fig. 3). 

Upon startup workers scan their local 

filesystem to find out what partitions and time periods 

do they hold (1). Workers connect to the gate and 

transmit the list of partitions they store (2). At this 

point, the gate keeps this information in worker pool 

– in-memory data structure that maps partitions to 

their corresponding owners. 

On a successful connection, the gate responses 
to a worker by dataset ids to further reduce network 

traffic as will be explained in the next section and 

rules for dataset files processing (3). 

  

 
 

Figure 3 – ChronosServer structure and worker 

initialization phase 
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ChronosServer Query Execution 

ChronosServer is optimized for small 

(comparable to dataset size) concurrent random reads 

in real-time by thousands of clients.  

The purpose of ChronosServer is to enable 

real-time access to data stored in various formats 

without their modification. It does not aim to build a 
complete storage infrastructure to rely on in all needs. 

For example, Climate Wikience uses document-

oriented database to store cyclone tracks while at the 

same time ChronosServer enables it to manipulate 

with reanalysis archives. 

A client interacts with ChronosServer in a 

query-response fashion. The queries are strings with 

syntax similar to SQL. This is done for simplicity 

since the clients are primarily GUI front ends with 

direct interaction with humans, so that they could 

clearly see and interact with the processes if needed. 
Once a GUI client application – Climate 

Wikience – starts up, it connects to the 

ChronosServer cluster through the gate. After the 

connection is established, it retrieves a list of 

available datasets by issuing corresponding queries. 

During user activity (zoom, pan, viewing time 

or layer change), Climate Wikience automatically 

determines required datasets.  

The Client – Server interaction is outlined on 

figure 4. Once time or spatial area is changed, GUI 

tries to locate data for a dataset in local disk cache 
(1). Since a usual research pattern is investigating the 

same period and geographical area during a relatively 

long time, it makes sense to cache the data in use.  

On cache miss, GUI constructs query string 

with required dataset and time for ChronosServer and 

transfers the query (2). 

A query looks like "SELECT DATA FROM 

r2.pressure.msl WHERE TIME = 01.02.2003 18:00". 

It will return R2 regular 2.5°×2.5° latitude-longitude 

grid values for mean sea level pressure for 2003 Feb 

01, 18:00 UTC. Note, that "DATA" and "TIME" are 

both reserved literals. 
The gate receives and parses the query (3). 

Once it locates workers with the required dataset 

partition it selects the first of them and shuffles the 

worker list for better load balance. Gate adds clients 

to the pool (5) to refer it later and selects dataset id 

(6) in order to exchange with integers instead of 

strings to minimize network traffic. 

The gate sends the query information to the 

selected worker (7). It in turn converts id to dataset 

path (8), finds the partition with given time and 

directly reads data from the compressed file (9).  
Notice, in addition to earlier observations, that 

a data format usually exploits data peculiarities to 

compress it efficiently. Reading compressed files 

directly significantly reduces data storage costs. 

 

 

 
 

Figure 4 – Client query processing 

 

This paper also introduces “divided query 

execution” technique to reduce ChronosServer load. 

Only a portion of required operations are performed 

on server to obtain ready to use data. Since most 

scientific file formats store compressed data, they 

require some preprocessing to unpack them after they 

are read from file. The proposed architecture exploits 

the opportunity of having desktop client application.  
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Instead of applying scale offset and add factor 

to retrieved data, a worker creates a script 

(instructions) which client has to run in order to 

unpack the data. It sends the instructions along with 

scale factor and add offset values to the client through 

the gate (11–13). 

The client instructions engine interprets the 
script generated by the worker (14). For small 

portions of data these additional operations take a 

very small amount of time (especially on a powerful 

worker machine). However, for large number of users 

this may become a serious issue. On the contrary, it is 

not perceivable by a human since it takes only several 

milliseconds to execute the script on client side. 

Workers do not cache data since the whole 

available time period of datasets is explored randomly 

by users what means that all available data are in use 

and cannot be cached neither in operating memory 
nor on a gate hard drive. 

ChronosServer Performance Evaluation 

Worker, gate and client were implemented on 

Java. Gate and Worker are multithreaded applications 

and can scale to large number of clients. 

The performance evaluation was carried out 

using two setups.  

The first one has 1 worker, 1 gate and 1, 2, 4, 

32, and 128 concurrent clients. Both the gate and the 

worker have one thread. 

The second setup uses 32 threads at gate 
handling client requests and 32 threads to 

communicate with workers. Two workers running 

with 8 threads both. 

Worker nodes were populated by intact files of 

R2. They are already partitioned by year. 

Machine characteristics are presented in table 

1. Workers use extent-based file system ext4fs. It 

seeks very fast inside a file continuously located on 

hard drive. 

 

Table 1. Machine characteristics 

 OS RAM Processor Java ver. 

Gate  Cent OS 

6.0 

8 GB Core i7, 8 

cores, 3.46 

Ghz 

1.6.0.27 

Worker Ubuntu 

10.04 

1 GB Intel Core 

Quad 2 

2.66GHz 

1.6.0.20 

Client Ubuntu 
10.10 

2 GB AMD Athlon 
II Dual-Core 

P320 (2.1 

GHz) 

1.6.0.26 

 

Workers are running on VM Ware 7.1 virtual 

machines configured to have 1 GB of RAM and 2 

processor cores. 

The configurations of the virtual machines are 

default. Nothing was tuned. Disk schedulers were not 

used and even atime attribute was not removed from 

the file system configuration. 

The client and gate use Oracle JRE while the 

workers use OpenJDK. 

Gate, worker and client are connected via a 

gigabit Ethernet network switch. The client machine 
is a commodity  notebook. It has 100 Mbit Ethernet 

card while gate and worker have 1 Gbit built-in 

Ethernet cards. 

The ping statistics for sending 10 times by 

20Kbytes of data between the worker and the gate has 

zero packet loss. The round trip time 

min/avg/max/mdev are  1.318/1.385/1.437/0.047 ms 

correspondingly. The same ping operation for client-

gate communication yields min/avg/max/mdev of 

round trip time equal to 3.629/3.649/3.676/0.049 ms. 

Tests were performed when the network was idle.  
A multithreaded application on the notebook 

in turn starts 1, 2, 4, 32, or 128 thread bundles 

simulating concurrent access of many clients. Each of 

them connects to the gate on startup.  

Each client thread waits the startup of the 

others. After that, one minute is granted for all 

threads in total during which they continuously 

generate queries. A thread randomly chooses a 

dataset among all available and random time within 

it. It generates string query requesting data for a 

single time moment of the chosen dataset (regular 
grid in case of reanalysis data). A thread does not 

issue a new query unless it receives a response from 

the server and applies all required instructions that 

come along with data. All random number generators 

were using uniform distribution. 

The full query execution time (later simply 

query time) was measured which includes time from 

generating query string for the gate to obtaining 

unpacked data (table 2). 

Two kinds of statistics were collected.  

For each thread in a bundle, minimum, 

maximum, average, median query execution time 
were measured together with the number of queries 

that a thread had time to execute during a minute 

given to all threads (not a minute per each thread). 

Due to space constraints, for each thread bundle only 

summary statistics is outlined. 

The median was calculated in all cases since 

the longest queries are usually yielded by access 

overheads to a particular partition for the first time. 

To avoid it further, workers cache descriptors for 

opened files. In general, a query is executed much 

faster than an average. 
The time to read a desired data slice from 

NetCDF file is small due to the extent-based 

filesystem.  

For setup 1 (table 2)  and 2 (setup 2) the values 

are almost the same for each thread within a bundle 

(± 2 ms), except for 128-threads bundle. Thus, there 

was no need to take an average, values for a random 

thread from a bundle are shown.  
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Table 2. Stages required to process a query and 

corresponding components responsible for them 

# Stage Where 

1 Create query Client 

2 Pack query Client 

3 Transfer query: Client → Gate N/A 

4 Unpack query Gate 

5 Parse query Gate 

6 Choose worker Gate 

7 Create request Gate 

8 Pack request Gate 

9 Transfer req.: Gate → Worker N/A 

10 Unpack request Worker 

11 Extract data Worker 

12 Create response Worker 

13 Pack response Worker 

14 Transfer resp.: Worker → Gate N/A 

15 Unpack response from worker Gate 

16 Pack response for client Gate 

17 Transfer resp.: Gate → Client N/A 

18 Unpack response Client 

19 Accept response Client 

 

However, 128-threads bundle exhausts 

available CPU resources. Most time is wasted for a 

thread queuing for its time quantum to run, neither 

performing operations nor even on waiting for data to 

arrive. Thus, for 128-threads bundle tables 3 and 5 

contain average numbers. 

 
Table 3. Statistics for thread bundles (setup 1) 

# Min Max Avg. Med. Queries 

1 7 46 9 9 6101 

2 7 102 12 12 4756 

4 90 467 160 153 379 

32 90 467 160 153 379 

128 274 1577 637 568 95 

 

Table 4. Statistics for thread bundles (setup 2) 

# Min Max Avg. Med. Queries 

1 3 34 7 9 7792 

2 3 21 9 9 6487 

4 3 30 14 13 4232 

32 60 162 107 106 560 

128 150 1302 434 377 139 

 

 

To get an idea of situation taking place for 

128-threads bundle, figures 5 and 6 present dot 

charts. The first one plots medium query execution 

time for setup 1 (upper boxes) and setup 2 (lower 

triangles) for each thread in 128-thread bundle. 
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Figure 5 – Medium query execution time for 128 

threads from setups 1 and 2 

 

The second one plots the number of queries 

for each of 128 threads which they managed to 

perform in a minute time frame for setup 1 (lower 

boxes) and setup 2 (upper circles). 
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Figure 6 – Number of queries performed by128 

threads from setups 1 and 2 
 

Although the number of serving threads at the 

gate does influence the overall performance, 

considerable spread can be seen on both plots. Thus, 

for 128 threads the results may not be representative 

due to the bottleneck on client side. At the same time, 

ChronosServer was only slightly loaded. 

In case of real world production, the requests 

will come from diverse network addresses and clients 

will not be unnaturally overloaded.  
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The second type of runtime information is the 

detailed execution time per stage collected on all 

system components, the gate, worker and client for a 

single query. Six (6) distinct queries for each setup 

were selected (tables 5 and 6). The first three are 

measured for bundle with one thread and the second 

for randomly chosen thread out of 128-thread bundle. 
The first query was the fastest, the second was the 

worst, while the third represents a typical case 

(median) of all queries for a selected thread.  

 

Table 5. Query execution time per stage, ms (setup 1) 

Stage 
# 

1 client 128 clients 

min max med min max med 

1 0.1 0.5 0.1 13 48 22 

2 0.1 0.5 0.3 16 55 27 

3 0.6 2.0 0.7 8 116 20 

4 0.2 2.0 0.3 11 43 18 

5 0.4 2.0 0.6 13 110 24 

6 0.2 1.0 0.4 23 89 27 

7 0.2 1.5 0.2 6 43 15 

8 0.1 2.0 0.2 10 67 31 

9 0.1 5.0 0.3 12 88 20 

10 0.2 2.0 0.5 14 43 35 

11 1.3 4.5 1.5 15 99 21 

12 0.3 2.5 0.3 49 57 50 

13 0.4 2.0 0.6 27 107 27 

14 0.2 3.5 0.3 13 86 26 

15 0.4 5.0 0.5 26 105 45 

16 0.4 2.0 0.4 35 112 54 

17 0.5 5.0 0.5 16 127 48 

18 1.0 1.5 1.1 37 88 45 

19 0.3 1.5 0.2 11 40 28 

Total 7 46 9 355 1523 583 

 

Presented values justify the fact that in a 128-

thread bundle the most of time a thread is just not 

able to run at all. In table 5, actual time (Act.) was 

obtained by summing up all values for each stage 

separately. Measured time (Meas.) was calculated by 

the thread itself from the beginning of query 

(generating string) to its completion (obtaining data). 

For a typical query (median) this difference reaches 

277 ms (363–86 ms).  

Pie charts on figures 7, 8 and 9 form an idea of 

how much time it costs for the gate, a worker and a 
client thread to perform a typical query. Median 

values were used for all plots. 

 

For setup 2, the gate speed has risen in 10,7 

times (214/20) compared to setup 1 (recall that 32 

client threads were used for gate in setup 2 and only 1 

thread for setup 1). For a single client thread the 

query execution time has also dropped. This is caused 

by using 2 workers in setup 2.  

Workers evenly share the portion of disk I/O 
required for query execution. 

Approximately 20 Kbytes per query are 

transferred (the size of a single R2 grid). 

 

Table 6. Query execution time per stage, ms (setup 2) 

Stage 
# 

1 client 128 clients 

min max med min max med 

1 0.1 0.2 0.2 2.0 2 2 

2 0.1 0.2 0.1 1.5 3 2 

3 0.2 0.8 0.2 2.0 7 2 

4 0.1 0.2 0.2 2.0 3 2 

5 0.2 2.3 0.3 0.5 6 2 

6 0.1 0.4 0.1 0.5 3 1 

7 0.1 0.3 0.1 0.5 5 1 

8 0.1 0.4 0.2 1.0 3 2 

9 0.1 0.2 0.2 0.5 3 2 

10 0.1 0.4 0.2 1.0 3 3 

11 0.3 3.6 1.3 4.5 16 8 

12 0.1 0.2 0.2 0.5 2 1 

13 0.1 0.7 0.1 1.5 5 2 

14 0.1 1.2 0.3 1.0 5 1 

15 0.3 3.1 0.6 5.0 45 10 

16 0.2 0.5 0.2 2.0 3 2 

17 0.3 3.3 1.4 3.5 14 10 

18 0.3 3.8 2.3 4.0 81 25 

19 0.1 1.2 0.8 0.5 59 8 

Act. 3 23 9 34 268 86 

Meas.  3 23 9 162 1217 363 

 

Client 1,70 

24%

Gate 2,60 

36%

Worker 2,90 

40%

 
Figure 7 – Setup 1, 1 thread on client 
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26%
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Worker 
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Figure 8 – Setup 1, 128 client threads 

 

Client 37,00 

52%

Gate 20,00 

28%

Worker 

14,00 20%

 
Figure 9 – Setup 2, 128 clients threads 

 

According to median value for 1 thread (table 

6) it is achieved 17,36 MBits/sec (1000*20/9/1024*8) 
transfer rate from ChronosServer to client (query 

transfer rate) compared to the maximum available 

network bandwidth of 100 MBits/sec. It transfers 

0.16MBits (20/1024*8) in 9 ms while the limit is 

0.90MBits in 9 ms (100/1000*9). 

It is not completely correct to compare query 

transfer rate and the maximum network bandwidth. 

Before a client receives a response from gate, data are 

read from disk by worker and go through the gate 

which in turn retransmits the data to the client 

duplicating network I/O.  
However, the overall results show that 

response times are suitable for real-time serving of 

thousands of concurrent users. This is justified by two 

key assumptions. 

First, the data is delivered to human users. 

Once they obtain its visualization, they usually study 

it via interactive GUI. This takes for a human at least 

several seconds or even minutes if not days for some 

cases. Thus, some time is expected to pass after a 

GUI will issue next query. In the synthetic 

experimental setups, clients were generating queries 

uninterruptedly on after another without any delays. 
Second, a researcher repeatedly explores the 

same region or time interval to obtain results. Thus, 

frequently used data quickly become cached on client 

side. Physical capabilities of a researcher will allow 

him/her to embrace during a day only the portion of 

data that can mostly reside on local hard drive. 

Related Work 

The techniques for storing large data on a 

computer cluster may be categorized into distributed 

file systems, clusters of relational database 

management systems (RDBMS) and document-

oriented databases. 

All current systems require the data to be 
partitioned (in spite of the presence of their natural 

partitioning), extracted from native formats, and 

imported into new storage model. Metadata must be 

maintained separately in a transformed way.  

Google File System [19] was designed to run 

on thousands of commodity machines with scalability 

and fault-tolerance in mind. It stores files broken on 

chunks which are distributed among chunkservers. It 

exploits the single master storing in-memory chunk 

locations reported by chunkservers on startup.  

However, ChronosServer has little in common 
with GFS since it has directly opposite goals. GFS 

was designed for batch processing of large data 

volumes rather than executing thousands of small 

real-time tasks. It suffers from high latency of data 

access [20]. 

HBase [13] is open-source implementation of 

Google Big Table [21] and is likely the most 

appropriate solution to the Climate Wikience 

problem. Because reanalysis data is never modified 

by a client, the proposed solution is much simpler and 

less resource demanding. In addition, it can easily 
incorporate data processing capabilities specific to 

research needs closer to data and does not require 

format convertions. 

Hadoop [22] with its HBase and other 

powerful systems is a rich ecosystem ranging from 

storage to data processing frameworks to cluster 

monitoring tools. However, many organizations 

already have vast amounts of accumulated data, 

human experience and tools with their specific data 

processing tasks. In addition, they have many other 

licensed third party software working with files 

storing their data in diverse formats. Switching to a 
new infrastructure may be painful, error-prone and 

require considerable personnel efforts and time.  

ChronosServer is designed to offer additional 

functionality to existing infrastructure. Certainly, a 

large body of tasks is waiting for HBase in many 

currently operational infrastructures. It is up to the 

personnel to decide which system to use depending 

on the goals they are trying to accomplish. 

The RNCEP package [23] for open-source R- 

statistics system [24] is not designed to store large 

amounts of data. However, it enables users to select 
date and variable name for NCEP Reanalysis 1 or 2 in 

R command prompt. It automatically downloads 

reanalysis files via Internet from NCEP servers via 

OpenDAP protocol. All 30MB yearly file is retrieved 

even if only one snapshot is asked and, certainly, not 

in real-time. User has to remove unnecessary grids as 

well as issue other commands to view data in 2D. 
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Lustre [25] is a very powerful fully POSIX-

compliant parallel file system. It runs on a 

considerable number of clusters from the Top 500 list 

[26]. It supports RAIDs, parallel I/O and tunes the 

operating system up to the kernel modification. It 

partitions large files across cluster nodes.  

However, ChronosServer does not aim to 
implement a file system nor Climate Wikience needs 

Lustre functionality either. Lustre yields large 

administration overheads once deployed on a cluster. 

Notice, however, that it would anyway require a 

software that reads diverse file formats, thus, Lustre 

would be not only complicated, but also an 

incomplete solution. 

Document oriented databases offer facilities to 

store large binary objects inside the database. They 

also offer sharding and replication. For example, 

MongoDB [27] uses GridFS [28]. It splits large 
objects into small fixed-sized chunks, usually 256k in 

size. Each chunk is stored as a separate document.  

Again, one need to invent facilities to preserve 

metadata and import data into MongoDB from their 

native formats. In addition, breaking large data into 

small chunks degrades the performance and 

introduces storage penalties. Increasing chunk size 

will make impossible reading a small portion of data 

from it. 

Memory-based distributed systems [29, 30] 

are not applicable to Climate Wikience problem since 
the whole available data is expected to be intensively 

used. This prohibits its in-memory caching.  

Parallel databases have real-time response 

times [31] and some of them have very good 

scalability [32]. However, database systems are 

inherently designed for effective operations on small 

data values. It is much more preferable to keep large 

data files outside a database [33]. 

Another approach is to represent the data as 

raster and use BLOB (Binary Large Object) type to 

store them inside an RDBMS.  

Rasdaman (raster data manager) [34] is the 
extension to PostgreSQL which partitions a given 

raster on tiles and stores them as BLOBs. It 

implements all raster operations itself together with 

spatial indexing. There is a commercial project [35] 

aiming to scale Rasdaman. This requires installing 

PostgreSQL on each cluster node.  

However, scaling Rasdaman will be not a 

trivial task. First, they will have to solve the problem 

of efficient management of dozens of autonomous 

PostgreSQL instances. Second, load balancing is hard 

to implement since it will require individual tiles 
(BLOBs) residing inside RDBMS to be moved 

between cluster nodes. The problem is complicated 

due to the fact that PostgreSQL does not have any 

scaling tools in contrast even to MySQL [31]. 

Another major drawback of this approach is 

that it is impossible to retrieve a portion of a BLOB. 

Moreover, in PostgreSQL (and, possibly other 

databases either) it is not possible to store large 

objects as a whole in a single row. RDBMS breaks 

large fields into several rows. In PostgreSQL this 

technique is called TOAST (or "the best thing since 
sliced bread") [36]. This means that a BLOB may not 

be stored continuously in a table file neither retrieved 

in a single go. 

There were discussions [33] which approach is 

better for storing large binary objects: BLOBs at 

databases or files. The main pros for RDBMS are 

sophisticated indexing schemes and join algorithms. 

However, for large binary data types it is not justified 

since there are no facilities to scale them. Hence, all 

previous work in RDBMS research field will be lost. 

Conclusions and Further Work 

ChronosServer enables real-time delivery of 

vast amounts of data stored in various formats to 

thousands of concurrent clients. Using it as a 

backend, Climate Wikience made possible the 

analyzes together with interactive 3D exploration of 

all available climate reanalysis archives to wide 

audience which is not limited only to a research 

community alone. 

The performance evaluation of ChronosServer 

reveals that it can withstand the expected number of 

clients maintaining real-time response rates. 
It is straightforward to use ChronosServer to 

enable real-time access for numerical models output, 

measurements from distributed mobile and sensor 

networks as well as many other important 

retrospective data. 

ChronosServer still requires some additional 

research concerning load balance and security. It is 

also beneficial to enable built-in computations during 

data retrieval, for example, summary statistics. 

The author believes that the system will 

advance the international research community in 

understanding of climate variability and change as 
well as other important domains.  

The Climate Wikience is freely available for 

download at wikience.donntu.edu.ua. 
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РОДРИГЕС ЗАЛЕПИНОС Р.А. 

Донецкий национальный технический 

университет 

ChronosServer: доступ в реальном времени 

тысяч одновременных клиентов к 

"нативному" многотерабайтному 

ретроспективному хранилищу данных  

 

 

ChronosServer работает на компьютерном 

кластере, который построен на оборудовании 

широкого потребления и обладает свойствами 

масштабируемости, высокой доступности и 

отказоустойчивости. Он создает на основе уже 

существующих больших объемов данных 

деятельный интеллектуальный продукт не 

изменяя исходные файлы. ChronosServer 
обнаруживает файлы на узлах кластера, 

анализирует их структуру и предоставляет 

независимую от формата SQL-подобную модель 

запросов для доступа к их содержимому. Он 

способен напрямую читать сжатые данные из 

различных форматов, включая NetCDF, GeoTIFF, 

GRIB, HDF и многих других. Это полностью 

сохраняет метаданные, хранящиеся в файле, в 

оригинальном виде, что необходимо для их 

корректной интерпретации и обработки другим 

программным обеспечением. Новые данные 
добавляются в систему прозрачным plug-and-play 

образом простым копированием их на узел 

кластера, сокращая затраты на 

администрирование. Это позволяет 

существующему программному обеспечению, 

например, ГИС системам либо статистическим 

пакетам напрямую оперировать с файлами, 

которые используются ChronosServer, а также не 

изменять старые коды генерации данных. 

ChronosServer сохраняет действующую на данный 

момент инфраструктуру неизменной, избегая 

болезненные, трудоемкие и подверженные 
ошибкам процедуры конвертации файлов данных, 

предоставляя в то же время дополнительные 

возможности для их анализа. 
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ChronosServer: доступ у реальному часі тисяч 

одночасних клієнтів до "нативного" 

багатотерабайтного ретроспективного сховища 

даних  

 

 

ChronosServer працює на комп'ютерному кластері, 

який побудовано на обладнані широкого 

спожитку та має властивості масштабованості, 

високої доступності та відмовостійкості. Він 

створює на основі вже існуючих великих об'ємів 

даних діяльний інтелектуальний продукт не 

змінюючи вхідні файли. ChronosServer виявляє 

файли на вузлах кластеру, аналізує їхню 
структуру та надає незалежну від формату SQL-

подібну модель запитів для доступу до їхнього 

вмісту. Він здатен напряму читати стислі дані з 

різних форматів, включаючи NetCDF, GeoTIFF, 

GRIB, HDF та багатьох інших. Це повністю 

зберігає метадані, які знаходяться у файлі у 

оригінальному вигляді, що необхідно для їхньої 

коректної інтерпретації та обробки іншим 

програмним забезпеченням. Нові дані додаються 

у систему прозорим plug-and-play методом у 

вигляді простого копіювання їх на вузол кластеру, 
що зменшує затрати на адміністрування. Це 

дозволяє існуючому програмному забезпеченню, 

наприклад, ГІС системам або статистичним 

пакетам напряму оперувати з файлами, які 

використовуються ChronosServer, а також не 

модифікувати старі коди генерації даних. 

ChronosServer зберігає діючу на даний момент 

інфраструктуру незмінною, запобігаючи 

трудомісткі та піддані помилкам процедури 

конвертації файлів даних, надаючи у той самий 

час додаткові можливості для їхнього аналізу. 
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