
SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

 УДК 004.75, 004.272.2, 004.514, 004.632, 004.624, 608.2

R.A. Rodriges Zalipynis

Donetsk National Technical University
rodriges@csm.donntu.edu.ua

ChronosServer: real-time access to “native” multi-terabyte retrospective data

warehouse by thousands of concurrent clients

ChronosServer runs on a cluster of commodity hardware and possesses scalability, high availability, and

fault tolerance properties. It turns vast amounts of already existing data into actionable intelligence with

no changes to the source data files. ChronosServer discovers files on cluster nodes, analyses their

structure, and provides format independent SQL-like query model to access their contents. It is capable to

read compressed data directly in various formats, including NetCDF, GeoTIFF, GRIB, HDF and many

others. This entirely preserves original file metadata as is, vital for its correct interpretation and

processing by other software. New data added to the system in a seamless plug-and-play fashion by

simple copying it to a cluster node reducing administration overheads. This allows existing software like

GIS or statistical packages to operate on files in use by ChronosServer as well as unmodified legacy code

to generate data for it. ChronosServer preserves operational infrastructure intact avoiding painful, time-

consuming and error-prone data conversions while offering additional opportunities for data analysis.

Data warehouse, real-time access, file formats, metadata, intact operational infrastructure, legacy code

Introduction

The modern world experiences explosive

growth of data volumes generated at enormous rates.

Many organizations have accumulated and continue

collect data in diverse formats. There is software

capable to analyze separate data files. However, there

remain challenges, including interactive visualization,

requiring real-time data access.

The need for the approach is demonstrated on

the most largely used data for climate research –
reanalysis archives [1, 2, 3, 4, 5]. Their applications

vary from deriving simple warming trends to cyclone

tracking [7, 8]. These data provide unprecedented

opportunities to better understand and, hence, prepare

and adapt to storm events, droughts, severe weather

conditions and future climate.

The first reanalysis called NCEP/NCAR was

released in 1996. Since then, over 9000 publications

using its data cite the original paper [9] (6 Nov 2011).

During the past decade, more recent reanalysis

emerged with higher resolutions and improved

models [4, 5].
To obtain the data, researchers repeatedly

perform the same set of time-consuming operations

by manually selecting and downloading required

files. Moreover, they duplicate efforts of their

colleagues and encounter the same difficulties due to

the absence of intuitive climate data share and

visualization tool.

Even primitive climate data visualization is

labor-intensive, requires knowledge of format details,

distracts from the primary goals and delays results.

Visualization makes the greatest contribution
to data understanding. It explores the broader

bandwidth of information opposed to text and

numbers. With effective visualization, outliers and

patterns are easier to perceive what leads to new

insights and improved decisions [10].

Surprisingly, in spite of climate reanalysis

importance and popularity, tools to interactively

explore and visualize them still do not exist.

The main challenge behind this goal is to keep

vast amounts of available data on-line for all users

while providing real-time access to only a small

portion of it for a single client.
Climate Wikience is the first system in the

world enabling interactive 3D visualization and

analyzes of all available climate reanalysis data in

real-time. It is implemented as cloud service [11, 12].

ChronosServer is the backend of Climate

Wikience, responsible for the real-time data access by

thousands of concurrent clients. By real-time is

considered data retrieval without perceivable delay to

a human exploring it visually.

Climate Wikience partially implements the

Wikience Concept. Nowadays, no single research

team is able to explore all available data to it. One of
the main Wikience goals is to allow the widest

possible audience to do data science effectively and

intuitively in order to obtain more value from it.

Currently no straightforward solution exists.

Although available systems have powerful distributed

models, even the most appropriate of them, HBase

[12], solves at most a half of the problem due to

difficulties of dealing with sophisticated file formats.

At the best, HBase may be used to store a copy of

existing data rather than fully switching to it as a

storage layer. ChronosServer offers an additional
representation and access tier for existing data while

not altering their native formats.

SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

Reanalysis Archives

During the history of meteorological

observations, data were collected by different

instruments and have different character like point

measurements at ground stations and areal

observations by a satellite. In addition, they are

irregularly distributed in time and space, stored in
different formats, contain uncertainties, errors and

gaps. It is extremely difficult to use that data to obtain

a single picture of an atmospheric state [14, 15].

The purpose of a reanalysis archive is to

derive the most precise retrospective picture of

atmospheric states using all available data and

provide the result as time series of regular latitude-

longitude grids to simplify its usage. The time step

between successive grids and grid resolution are fixed

during the whole period. Each node of the grid is

assigned a value of a meteorological variable (fig 1).

Figure 1 – Mean sea level pressure regular grid with

isobars for 01/01/2003 00:00 UTC shown at 20° and

500 GPa intervals respectively. Circle sizes are

proportional to pressure values. Built in 3D with

Climate Wikience using AMIP/DOE Reanalysis 2

For example, AMIP/DOE Reanalysis 2 (R2)

spans several decades, from 01 January 1979 to

current date with 6 hour interval and contains over 80

variables. The grid resolution is 2.5° × 2.5° [16].

Climate reanalysis data are usually shipped in

NetCDF [17] or GRIB [18] formats. The grids for
each variable are stored in a sequence of separate files

partitioned by time. File names are prefixed by the

code name of the variable.

For example, each file in R2 stores yearly data

for one given variable. Thus, surface pressure is

stored in files named pres.sfc.1979.nc,

pres.sfc.1980.nc, …, pres.sfc.2011.nc. Where

“pres.sfc” denotes “surface pressure”, 1979 is the

year, and “.nc” is file extension for NetCDF format.

Data inside a file is compressed. NetCDF uses

simple compression technique. All grid values within

a given file are subtracted the constant called “add

offset” and divided to “scale factor”. To use the

values from NetCDF file, they must be multiplied by

scale factor and summed with add offset.

Besides the data, NetCDF files store metadata.

It includes actual data range, min and max values,
constants used for missing values and other important

characteristics. This information is easily computed

from original data. However, there are datasets where

metadata is rich and specific and, thus, vital for

correct data interpretation. For example, satellite

imagery may have metadata containing radiometer

calibration information. Hence, it is preferably to

preserve metadata within a storage system as is.

During visual data exploration, a researcher is

usually interested in a single grid at a time. A storage

system must have the ability to extract only one grid.

ChronosServer Architecture

A ChronosServer cluster consists of multiple

workers responsible for data storage and a single gate

with Internet connection. Clients interact with

ChronosServer through the gate via Internet channel.

Workers do not have direct Internet access (fig. 2).

Figure 2 – ChronosServer architecture

A single gate is used to coordinate data access,

manage data partitions and transfer data from workers

to clients. Although it may become a bottleneck in

data exchange, this design was chosen due to
constraints with available network addresses.

However, it is possible to have several gates if more

network addresses are available or router used.

ChronosServer (Chronos is Greek word for

time) partitions retrospective data across cluster

nodes by time attribute. A series of measurements

taken during a period of time with some interval is

common nowadays to many domains (recall R2 files

that already partitioned by year).

For the sake of clarity, later descriptions will

rely on R2 data organization for examples.

The dataset is a storage unit inside
ChronosServer representing the complete available

period for an R2 variable. A dataset may consist of

SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

arbitrary number of partitions (files). Each partition

stores data for a continuous time period. The volume

of a single partition is not fixed.

Partitions are replicated across several workers

for fault-tolerance. Not preconfigured number of

workers may contain the same partition (is called here

as variable replication rate). This may be useful for
newly arrived data which popularity is high for the

first time and decays further.

Datasets are organized in a hierarchy of

directories (fig. 3). All workers and the gate have the

same hierarchy of data directory on their local

filesystems. Thus, a dataset is identified by an

unambiguous pathname global to the whole cluster. A

worker stores only a subset of all dataset partitions.

Each worker stores only a portion the whole

ChronosServer directory namespace relevant to the

data it possesses. Usually directories are named
straightforward following the aliases of reanalysis

variables.

The gate keeps on its local hard drive the

complete hierarchy of directories for ChronosServer.

Instead of storing partitions, its directories may

optionally contain additional dataset descriptions, for

example, their full names (fig. 3). It may also store

rules for data processing before/after extraction or

sending the result like unpacking compressed data.

Workers are responsible for reading requested

data from a file for a given time snapshot. They do
not know what datasets are stored in files on their

local hard drives. The gate is not aware of total

number of workers in the cluster and total number of

partitions for a dataset.

The system is designed as fault tolerant and

does not require all workers to be permanently up.

Only the master must be a fault-protected machine to

maintain the overall service availability. By having a

single coordinating machine, sophisticated algorithms

for load balancing and data placement can be

performed. Thus, it is worth investing into one steady

node to benefit from better service.
 The gate is unaware of partition locations

until a worker itself reports them to it. This is done

for better scalability and fault tolerance (fig. 3).

Upon startup workers scan their local

filesystem to find out what partitions and time periods

do they hold (1). Workers connect to the gate and

transmit the list of partitions they store (2). At this

point, the gate keeps this information in worker pool

– in-memory data structure that maps partitions to

their corresponding owners.

On a successful connection, the gate responses
to a worker by dataset ids to further reduce network

traffic as will be explained in the next section and

rules for dataset files processing (3).

Figure 3 – ChronosServer structure and worker

initialization phase

SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

ChronosServer Query Execution

ChronosServer is optimized for small

(comparable to dataset size) concurrent random reads

in real-time by thousands of clients.

The purpose of ChronosServer is to enable

real-time access to data stored in various formats

without their modification. It does not aim to build a
complete storage infrastructure to rely on in all needs.

For example, Climate Wikience uses document-

oriented database to store cyclone tracks while at the

same time ChronosServer enables it to manipulate

with reanalysis archives.

A client interacts with ChronosServer in a

query-response fashion. The queries are strings with

syntax similar to SQL. This is done for simplicity

since the clients are primarily GUI front ends with

direct interaction with humans, so that they could

clearly see and interact with the processes if needed.
Once a GUI client application – Climate

Wikience – starts up, it connects to the

ChronosServer cluster through the gate. After the

connection is established, it retrieves a list of

available datasets by issuing corresponding queries.

During user activity (zoom, pan, viewing time

or layer change), Climate Wikience automatically

determines required datasets.

The Client – Server interaction is outlined on

figure 4. Once time or spatial area is changed, GUI

tries to locate data for a dataset in local disk cache
(1). Since a usual research pattern is investigating the

same period and geographical area during a relatively

long time, it makes sense to cache the data in use.

On cache miss, GUI constructs query string

with required dataset and time for ChronosServer and

transfers the query (2).

A query looks like "SELECT DATA FROM

r2.pressure.msl WHERE TIME = 01.02.2003 18:00".

It will return R2 regular 2.5°×2.5° latitude-longitude

grid values for mean sea level pressure for 2003 Feb

01, 18:00 UTC. Note, that "DATA" and "TIME" are

both reserved literals.
The gate receives and parses the query (3).

Once it locates workers with the required dataset

partition it selects the first of them and shuffles the

worker list for better load balance. Gate adds clients

to the pool (5) to refer it later and selects dataset id

(6) in order to exchange with integers instead of

strings to minimize network traffic.

The gate sends the query information to the

selected worker (7). It in turn converts id to dataset

path (8), finds the partition with given time and

directly reads data from the compressed file (9).
Notice, in addition to earlier observations, that

a data format usually exploits data peculiarities to

compress it efficiently. Reading compressed files

directly significantly reduces data storage costs.

Figure 4 – Client query processing

This paper also introduces “divided query

execution” technique to reduce ChronosServer load.

Only a portion of required operations are performed

on server to obtain ready to use data. Since most

scientific file formats store compressed data, they

require some preprocessing to unpack them after they

are read from file. The proposed architecture exploits

the opportunity of having desktop client application.

SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

Instead of applying scale offset and add factor

to retrieved data, a worker creates a script

(instructions) which client has to run in order to

unpack the data. It sends the instructions along with

scale factor and add offset values to the client through

the gate (11–13).

The client instructions engine interprets the
script generated by the worker (14). For small

portions of data these additional operations take a

very small amount of time (especially on a powerful

worker machine). However, for large number of users

this may become a serious issue. On the contrary, it is

not perceivable by a human since it takes only several

milliseconds to execute the script on client side.

Workers do not cache data since the whole

available time period of datasets is explored randomly

by users what means that all available data are in use

and cannot be cached neither in operating memory
nor on a gate hard drive.

ChronosServer Performance Evaluation

Worker, gate and client were implemented on

Java. Gate and Worker are multithreaded applications

and can scale to large number of clients.

The performance evaluation was carried out

using two setups.

The first one has 1 worker, 1 gate and 1, 2, 4,

32, and 128 concurrent clients. Both the gate and the

worker have one thread.

The second setup uses 32 threads at gate
handling client requests and 32 threads to

communicate with workers. Two workers running

with 8 threads both.

Worker nodes were populated by intact files of

R2. They are already partitioned by year.

Machine characteristics are presented in table

1. Workers use extent-based file system ext4fs. It

seeks very fast inside a file continuously located on

hard drive.

Table 1. Machine characteristics

 OS RAM Processor Java ver.

Gate Cent OS

6.0

8 GB Core i7, 8

cores, 3.46

Ghz

1.6.0.27

Worker Ubuntu

10.04

1 GB Intel Core

Quad 2

2.66GHz

1.6.0.20

Client Ubuntu
10.10

2 GB AMD Athlon
II Dual-Core

P320 (2.1

GHz)

1.6.0.26

Workers are running on VM Ware 7.1 virtual

machines configured to have 1 GB of RAM and 2

processor cores.

The configurations of the virtual machines are

default. Nothing was tuned. Disk schedulers were not

used and even atime attribute was not removed from

the file system configuration.

The client and gate use Oracle JRE while the

workers use OpenJDK.

Gate, worker and client are connected via a

gigabit Ethernet network switch. The client machine
is a commodity notebook. It has 100 Mbit Ethernet

card while gate and worker have 1 Gbit built-in

Ethernet cards.

The ping statistics for sending 10 times by

20Kbytes of data between the worker and the gate has

zero packet loss. The round trip time

min/avg/max/mdev are 1.318/1.385/1.437/0.047 ms

correspondingly. The same ping operation for client-

gate communication yields min/avg/max/mdev of

round trip time equal to 3.629/3.649/3.676/0.049 ms.

Tests were performed when the network was idle.
A multithreaded application on the notebook

in turn starts 1, 2, 4, 32, or 128 thread bundles

simulating concurrent access of many clients. Each of

them connects to the gate on startup.

Each client thread waits the startup of the

others. After that, one minute is granted for all

threads in total during which they continuously

generate queries. A thread randomly chooses a

dataset among all available and random time within

it. It generates string query requesting data for a

single time moment of the chosen dataset (regular
grid in case of reanalysis data). A thread does not

issue a new query unless it receives a response from

the server and applies all required instructions that

come along with data. All random number generators

were using uniform distribution.

The full query execution time (later simply

query time) was measured which includes time from

generating query string for the gate to obtaining

unpacked data (table 2).

Two kinds of statistics were collected.

For each thread in a bundle, minimum,

maximum, average, median query execution time
were measured together with the number of queries

that a thread had time to execute during a minute

given to all threads (not a minute per each thread).

Due to space constraints, for each thread bundle only

summary statistics is outlined.

The median was calculated in all cases since

the longest queries are usually yielded by access

overheads to a particular partition for the first time.

To avoid it further, workers cache descriptors for

opened files. In general, a query is executed much

faster than an average.
The time to read a desired data slice from

NetCDF file is small due to the extent-based

filesystem.

For setup 1 (table 2) and 2 (setup 2) the values

are almost the same for each thread within a bundle

(± 2 ms), except for 128-threads bundle. Thus, there

was no need to take an average, values for a random

thread from a bundle are shown.

SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

Table 2. Stages required to process a query and

corresponding components responsible for them

Stage Where

1 Create query Client

2 Pack query Client

3 Transfer query: Client → Gate N/A

4 Unpack query Gate

5 Parse query Gate

6 Choose worker Gate

7 Create request Gate

8 Pack request Gate

9 Transfer req.: Gate → Worker N/A

10 Unpack request Worker

11 Extract data Worker

12 Create response Worker

13 Pack response Worker

14 Transfer resp.: Worker → Gate N/A

15 Unpack response from worker Gate

16 Pack response for client Gate

17 Transfer resp.: Gate → Client N/A

18 Unpack response Client

19 Accept response Client

However, 128-threads bundle exhausts

available CPU resources. Most time is wasted for a

thread queuing for its time quantum to run, neither

performing operations nor even on waiting for data to

arrive. Thus, for 128-threads bundle tables 3 and 5

contain average numbers.

Table 3. Statistics for thread bundles (setup 1)

Min Max Avg. Med. Queries

1 7 46 9 9 6101

2 7 102 12 12 4756

4 90 467 160 153 379

32 90 467 160 153 379

128 274 1577 637 568 95

Table 4. Statistics for thread bundles (setup 2)

Min Max Avg. Med. Queries

1 3 34 7 9 7792

2 3 21 9 9 6487

4 3 30 14 13 4232

32 60 162 107 106 560

128 150 1302 434 377 139

To get an idea of situation taking place for

128-threads bundle, figures 5 and 6 present dot

charts. The first one plots medium query execution

time for setup 1 (upper boxes) and setup 2 (lower

triangles) for each thread in 128-thread bundle.

270

320

370

420

470

520

570

620

0 16 32 48 64 80 96 112 128
Figure 5 – Medium query execution time for 128

threads from setups 1 and 2

The second one plots the number of queries

for each of 128 threads which they managed to

perform in a minute time frame for setup 1 (lower

boxes) and setup 2 (upper circles).

70

80

90

100

110

120

130

140

150

160

170

0 16 32 48 64 80 96 112 128
Figure 6 – Number of queries performed by128

threads from setups 1 and 2

Although the number of serving threads at the

gate does influence the overall performance,

considerable spread can be seen on both plots. Thus,

for 128 threads the results may not be representative

due to the bottleneck on client side. At the same time,

ChronosServer was only slightly loaded.

In case of real world production, the requests

will come from diverse network addresses and clients

will not be unnaturally overloaded.

SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

The second type of runtime information is the

detailed execution time per stage collected on all

system components, the gate, worker and client for a

single query. Six (6) distinct queries for each setup

were selected (tables 5 and 6). The first three are

measured for bundle with one thread and the second

for randomly chosen thread out of 128-thread bundle.
The first query was the fastest, the second was the

worst, while the third represents a typical case

(median) of all queries for a selected thread.

Table 5. Query execution time per stage, ms (setup 1)

Stage

1 client 128 clients

min max med min max med

1 0.1 0.5 0.1 13 48 22

2 0.1 0.5 0.3 16 55 27

3 0.6 2.0 0.7 8 116 20

4 0.2 2.0 0.3 11 43 18

5 0.4 2.0 0.6 13 110 24

6 0.2 1.0 0.4 23 89 27

7 0.2 1.5 0.2 6 43 15

8 0.1 2.0 0.2 10 67 31

9 0.1 5.0 0.3 12 88 20

10 0.2 2.0 0.5 14 43 35

11 1.3 4.5 1.5 15 99 21

12 0.3 2.5 0.3 49 57 50

13 0.4 2.0 0.6 27 107 27

14 0.2 3.5 0.3 13 86 26

15 0.4 5.0 0.5 26 105 45

16 0.4 2.0 0.4 35 112 54

17 0.5 5.0 0.5 16 127 48

18 1.0 1.5 1.1 37 88 45

19 0.3 1.5 0.2 11 40 28

Total 7 46 9 355 1523 583

Presented values justify the fact that in a 128-

thread bundle the most of time a thread is just not

able to run at all. In table 5, actual time (Act.) was

obtained by summing up all values for each stage

separately. Measured time (Meas.) was calculated by

the thread itself from the beginning of query

(generating string) to its completion (obtaining data).

For a typical query (median) this difference reaches

277 ms (363–86 ms).

Pie charts on figures 7, 8 and 9 form an idea of

how much time it costs for the gate, a worker and a
client thread to perform a typical query. Median

values were used for all plots.

For setup 2, the gate speed has risen in 10,7

times (214/20) compared to setup 1 (recall that 32

client threads were used for gate in setup 2 and only 1

thread for setup 1). For a single client thread the

query execution time has also dropped. This is caused

by using 2 workers in setup 2.

Workers evenly share the portion of disk I/O
required for query execution.

Approximately 20 Kbytes per query are

transferred (the size of a single R2 grid).

Table 6. Query execution time per stage, ms (setup 2)

Stage

1 client 128 clients

min max med min max med

1 0.1 0.2 0.2 2.0 2 2

2 0.1 0.2 0.1 1.5 3 2

3 0.2 0.8 0.2 2.0 7 2

4 0.1 0.2 0.2 2.0 3 2

5 0.2 2.3 0.3 0.5 6 2

6 0.1 0.4 0.1 0.5 3 1

7 0.1 0.3 0.1 0.5 5 1

8 0.1 0.4 0.2 1.0 3 2

9 0.1 0.2 0.2 0.5 3 2

10 0.1 0.4 0.2 1.0 3 3

11 0.3 3.6 1.3 4.5 16 8

12 0.1 0.2 0.2 0.5 2 1

13 0.1 0.7 0.1 1.5 5 2

14 0.1 1.2 0.3 1.0 5 1

15 0.3 3.1 0.6 5.0 45 10

16 0.2 0.5 0.2 2.0 3 2

17 0.3 3.3 1.4 3.5 14 10

18 0.3 3.8 2.3 4.0 81 25

19 0.1 1.2 0.8 0.5 59 8

Act. 3 23 9 34 268 86

Meas. 3 23 9 162 1217 363

Client 1,70

24%

Gate 2,60

36%

Worker 2,90

40%

Figure 7 – Setup 1, 1 thread on client

SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

Client 122,00

26%

Gate 214,00

46%

Worker

133,00 28%

Figure 8 – Setup 1, 128 client threads

Client 37,00

52%

Gate 20,00

28%

Worker

14,00 20%

Figure 9 – Setup 2, 128 clients threads

According to median value for 1 thread (table

6) it is achieved 17,36 MBits/sec (1000*20/9/1024*8)
transfer rate from ChronosServer to client (query

transfer rate) compared to the maximum available

network bandwidth of 100 MBits/sec. It transfers

0.16MBits (20/1024*8) in 9 ms while the limit is

0.90MBits in 9 ms (100/1000*9).

It is not completely correct to compare query

transfer rate and the maximum network bandwidth.

Before a client receives a response from gate, data are

read from disk by worker and go through the gate

which in turn retransmits the data to the client

duplicating network I/O.
However, the overall results show that

response times are suitable for real-time serving of

thousands of concurrent users. This is justified by two

key assumptions.

First, the data is delivered to human users.

Once they obtain its visualization, they usually study

it via interactive GUI. This takes for a human at least

several seconds or even minutes if not days for some

cases. Thus, some time is expected to pass after a

GUI will issue next query. In the synthetic

experimental setups, clients were generating queries

uninterruptedly on after another without any delays.
Second, a researcher repeatedly explores the

same region or time interval to obtain results. Thus,

frequently used data quickly become cached on client

side. Physical capabilities of a researcher will allow

him/her to embrace during a day only the portion of

data that can mostly reside on local hard drive.

Related Work

The techniques for storing large data on a

computer cluster may be categorized into distributed

file systems, clusters of relational database

management systems (RDBMS) and document-

oriented databases.

All current systems require the data to be
partitioned (in spite of the presence of their natural

partitioning), extracted from native formats, and

imported into new storage model. Metadata must be

maintained separately in a transformed way.

Google File System [19] was designed to run

on thousands of commodity machines with scalability

and fault-tolerance in mind. It stores files broken on

chunks which are distributed among chunkservers. It

exploits the single master storing in-memory chunk

locations reported by chunkservers on startup.

However, ChronosServer has little in common
with GFS since it has directly opposite goals. GFS

was designed for batch processing of large data

volumes rather than executing thousands of small

real-time tasks. It suffers from high latency of data

access [20].

HBase [13] is open-source implementation of

Google Big Table [21] and is likely the most

appropriate solution to the Climate Wikience

problem. Because reanalysis data is never modified

by a client, the proposed solution is much simpler and

less resource demanding. In addition, it can easily
incorporate data processing capabilities specific to

research needs closer to data and does not require

format convertions.

Hadoop [22] with its HBase and other

powerful systems is a rich ecosystem ranging from

storage to data processing frameworks to cluster

monitoring tools. However, many organizations

already have vast amounts of accumulated data,

human experience and tools with their specific data

processing tasks. In addition, they have many other

licensed third party software working with files

storing their data in diverse formats. Switching to a
new infrastructure may be painful, error-prone and

require considerable personnel efforts and time.

ChronosServer is designed to offer additional

functionality to existing infrastructure. Certainly, a

large body of tasks is waiting for HBase in many

currently operational infrastructures. It is up to the

personnel to decide which system to use depending

on the goals they are trying to accomplish.

The RNCEP package [23] for open-source R-

statistics system [24] is not designed to store large

amounts of data. However, it enables users to select
date and variable name for NCEP Reanalysis 1 or 2 in

R command prompt. It automatically downloads

reanalysis files via Internet from NCEP servers via

OpenDAP protocol. All 30MB yearly file is retrieved

even if only one snapshot is asked and, certainly, not

in real-time. User has to remove unnecessary grids as

well as issue other commands to view data in 2D.

SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

Lustre [25] is a very powerful fully POSIX-

compliant parallel file system. It runs on a

considerable number of clusters from the Top 500 list

[26]. It supports RAIDs, parallel I/O and tunes the

operating system up to the kernel modification. It

partitions large files across cluster nodes.

However, ChronosServer does not aim to
implement a file system nor Climate Wikience needs

Lustre functionality either. Lustre yields large

administration overheads once deployed on a cluster.

Notice, however, that it would anyway require a

software that reads diverse file formats, thus, Lustre

would be not only complicated, but also an

incomplete solution.

Document oriented databases offer facilities to

store large binary objects inside the database. They

also offer sharding and replication. For example,

MongoDB [27] uses GridFS [28]. It splits large
objects into small fixed-sized chunks, usually 256k in

size. Each chunk is stored as a separate document.

Again, one need to invent facilities to preserve

metadata and import data into MongoDB from their

native formats. In addition, breaking large data into

small chunks degrades the performance and

introduces storage penalties. Increasing chunk size

will make impossible reading a small portion of data

from it.

Memory-based distributed systems [29, 30]

are not applicable to Climate Wikience problem since
the whole available data is expected to be intensively

used. This prohibits its in-memory caching.

Parallel databases have real-time response

times [31] and some of them have very good

scalability [32]. However, database systems are

inherently designed for effective operations on small

data values. It is much more preferable to keep large

data files outside a database [33].

Another approach is to represent the data as

raster and use BLOB (Binary Large Object) type to

store them inside an RDBMS.

Rasdaman (raster data manager) [34] is the
extension to PostgreSQL which partitions a given

raster on tiles and stores them as BLOBs. It

implements all raster operations itself together with

spatial indexing. There is a commercial project [35]

aiming to scale Rasdaman. This requires installing

PostgreSQL on each cluster node.

However, scaling Rasdaman will be not a

trivial task. First, they will have to solve the problem

of efficient management of dozens of autonomous

PostgreSQL instances. Second, load balancing is hard

to implement since it will require individual tiles
(BLOBs) residing inside RDBMS to be moved

between cluster nodes. The problem is complicated

due to the fact that PostgreSQL does not have any

scaling tools in contrast even to MySQL [31].

Another major drawback of this approach is

that it is impossible to retrieve a portion of a BLOB.

Moreover, in PostgreSQL (and, possibly other

databases either) it is not possible to store large

objects as a whole in a single row. RDBMS breaks

large fields into several rows. In PostgreSQL this

technique is called TOAST (or "the best thing since
sliced bread") [36]. This means that a BLOB may not

be stored continuously in a table file neither retrieved

in a single go.

There were discussions [33] which approach is

better for storing large binary objects: BLOBs at

databases or files. The main pros for RDBMS are

sophisticated indexing schemes and join algorithms.

However, for large binary data types it is not justified

since there are no facilities to scale them. Hence, all

previous work in RDBMS research field will be lost.

Conclusions and Further Work

ChronosServer enables real-time delivery of

vast amounts of data stored in various formats to

thousands of concurrent clients. Using it as a

backend, Climate Wikience made possible the

analyzes together with interactive 3D exploration of

all available climate reanalysis archives to wide

audience which is not limited only to a research

community alone.

The performance evaluation of ChronosServer

reveals that it can withstand the expected number of

clients maintaining real-time response rates.
It is straightforward to use ChronosServer to

enable real-time access for numerical models output,

measurements from distributed mobile and sensor

networks as well as many other important

retrospective data.

ChronosServer still requires some additional

research concerning load balance and security. It is

also beneficial to enable built-in computations during

data retrieval, for example, summary statistics.

The author believes that the system will

advance the international research community in

understanding of climate variability and change as
well as other important domains.

The Climate Wikience is freely available for

download at wikience.donntu.edu.ua.

Acknowledgements

This work was supported by Award No.

UKM1-2973-DO-09 of the U.S. Civilian Research &

Development Foundation (CRDF). Any opinions,

findings and conclusions or recommendations

expressed in this material are those of the authors and

do not necessarily reflect the views of CRDF.

SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

Literature

[1] Kalnay et al., The NCEP/NCAR 40-year reanalysis project, BAMS, 77, 437-470, 1996.

[2] NCEP-DEO AMIP-II Reanalysis (R-2): M. Kanamitsu, W. Ebisuzaki, J. Woollen, S-K Yang, J.J.

Hnilo, M. Fiorino, and G. L. Potter. 1631-1643, Nov 2002, Bul. of the Atmos. Met. Soc.

[3] Uppala S. M. et al, The ERA-40 re-analysis, Q. J. R. Meteorol. Soc. (2005), 131, pp. 2961–3012.

[4] Compo G.P. et al., The Twentieth Century Reanalysis Project, Q. J. R. Meteorol. Soc. 137:128,

,January, 2011 Part A.
[5] Saha S. et al, The NCEP Climate Forecast System Reanalysis, BAMS, 1015–1057, 2011.

[7] Hannachi A., Awad A., Ammar K. Climatology and classification of Spring Saharan cyclone

tracks, Clim. Dyn., (37) 473–491, 2011.

[8] Murray, R. J., and I. Simmonds, A numerical scheme for tracking cyclone centres from digital data.

Part I: Development and operation of the scheme. Australian Meteorological Magazine, 39, 155–166, 1991.

[9] Google Academy [Electronic resource]

http://scholar.google.com.ua/scholar?cites=14652521284756584733&as_sdt=2005&sciodt=0,5&hl=ru

[10] Introduction to Data Mining and Knowledge Discovery, Third Edition. Two Crows Corporation.

[Electronic resource] http://www.twocrows.com/intro-dm.pdf

[11] Rodriges Zalipynis R.A., Zapletin E.A., Averin G.V. The Wikience: Community Data Science.

Concept and Implementation. Proceedings of the ICT–2011: Informatics and Computer Technologies,
International Scientific-Technical Conference of Students, Postgraduate Students and Young Scientists,

Donetsk, November 22–23, 2011.

[12] Climate Wikience [Electronic resource] http://wikience.donntu.edu.ua

[13] Apache HBase [Electronic resource] http://hbase.apache.org/

[14] Rodriges Zalipynis R.A. Data and data mining methods for natural environment research.

// System analysis and information technology in environmental and social sciences, Donetsk National

Technical University, Vol. 1, 2011. – p. 94–107.

[15] Kalnay E. Atmospheric modeling, data assimilation and predictability. – Cambridge University

Press, 2003. – 369 p.

[16] NCEP-DOE AMIP-II Reanalysis (AKA Reanalysis 2) [Electronic resource]

http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis2.html
[17] Unidata | NetCDF [Electronic resource] http://www.unidata.ucar.edu/software/netcdf/

[18] GRIB.US > Home [Electronic resource] http://www.grib.us/

[19] Ghemawat S. et al. The Google File System. SOSP’03, Bolton Landing, New York, USA, 2003.

[20] Bajda-Pawlikowski K. et al Efcient Processing of Data Warehousing Queries in a Split Execution

Environment, SIGMOD11, June12–16, 2011, Athens, Greece.

[21] Chang F. et al Bigtable: A Distributed Storage System for Structured Data, OSDI 2006.

[22] Cloudera Hadoop Distribution [Electronic resource] http://www.cloudera.com/hadoop/

[23] Kemp, M.U., van Loon, E.E., Shamoun-Baranes, J.,and Bouten,W. RNCEP: global weather and

climate data at your fingertips. Methods in Ecology and Evolution, 2011.

[24] R Development Core Team, R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing, Vienna. [Electronic resource] http://www.r-project.org/

[25] Schwan P. Lustre: Building a File System for 1,000-node Clusters. Proceedings of the Linux
Symposium. – Ontario, Canada, 23–26 July 2003, p. 380–386.

[26] Home | TOP500 Supercomputing Sites [Electronic resource] http://top500.org/

[27] MongoDB [Electronic resource] http://www.mongodb.org/

[28] GridFS Specification – MongoDB [Electronic resource]

 http://www.mongodb.org/display/DOCS/GridFS+Specification

[29] Redis [Electronic resource] http://redis.io/

[30] Membase [Electronic resource] http://www.couchbase.org/membase

[31] MySQL Cluster [Electronic resource] http://www.mysql.com/products/cluster/

[32] Vertica [Electronic resource] http://www.vertica.com/

[33] Sears R., Ingen C., Gray J. To BLOB or Not To BLOB: Large Object Storage in a Database or a

Filesystem, Technical Report MSR-TR-2006-45, 2006.
[34] The rasdaman raster array database [Electronic resource] http://rasdaman.eecs.jacobs-

university.de/trac/rasdaman

[35] Tera-Scale Image Processing | Jacobs University [Electronic resource] http://www.jacobs-

university.de/lsis/projects/TeraPro

[36] PostgreSQL: Documentation: Manuals: PostgreSQL 8.3: TOAST [Electronic resource]

http://www.postgresql.org/docs/8.3/static/storage-toast.html

Надійшла до редколегії 08.10.2011

SSN 1996-1588 Наукові праці ДонНТУ випуск 14(188)
 Серія “Інформатика, кібернетика 2011
 та обчислювальна техніка”

РОДРИГЕС ЗАЛЕПИНОС Р.А.

Донецкий национальный технический

университет

ChronosServer: доступ в реальном времени

тысяч одновременных клиентов к

"нативному" многотерабайтному

ретроспективному хранилищу данных

ChronosServer работает на компьютерном

кластере, который построен на оборудовании

широкого потребления и обладает свойствами

масштабируемости, высокой доступности и

отказоустойчивости. Он создает на основе уже

существующих больших объемов данных

деятельный интеллектуальный продукт не

изменяя исходные файлы. ChronosServer
обнаруживает файлы на узлах кластера,

анализирует их структуру и предоставляет

независимую от формата SQL-подобную модель

запросов для доступа к их содержимому. Он

способен напрямую читать сжатые данные из

различных форматов, включая NetCDF, GeoTIFF,

GRIB, HDF и многих других. Это полностью

сохраняет метаданные, хранящиеся в файле, в

оригинальном виде, что необходимо для их

корректной интерпретации и обработки другим

программным обеспечением. Новые данные
добавляются в систему прозрачным plug-and-play

образом простым копированием их на узел

кластера, сокращая затраты на

администрирование. Это позволяет

существующему программному обеспечению,

например, ГИС системам либо статистическим

пакетам напрямую оперировать с файлами,

которые используются ChronosServer, а также не

изменять старые коды генерации данных.

ChronosServer сохраняет действующую на данный

момент инфраструктуру неизменной, избегая

болезненные, трудоемкие и подверженные
ошибкам процедуры конвертации файлов данных,

предоставляя в то же время дополнительные

возможности для их анализа.

Хранилище данных, доступ в реальном

времени, форматы файлов, метаданные,

неизменная действующая инфраструктура,

старые коды

РОДРІГЕС ЗАЛІПИНІС Р.А.

Донецький національний технічний університет

ChronosServer: доступ у реальному часі тисяч

одночасних клієнтів до "нативного"

багатотерабайтного ретроспективного сховища

даних

ChronosServer працює на комп'ютерному кластері,

який побудовано на обладнані широкого

спожитку та має властивості масштабованості,

високої доступності та відмовостійкості. Він

створює на основі вже існуючих великих об'ємів

даних діяльний інтелектуальний продукт не

змінюючи вхідні файли. ChronosServer виявляє

файли на вузлах кластеру, аналізує їхню
структуру та надає незалежну від формату SQL-

подібну модель запитів для доступу до їхнього

вмісту. Він здатен напряму читати стислі дані з

різних форматів, включаючи NetCDF, GeoTIFF,

GRIB, HDF та багатьох інших. Це повністю

зберігає метадані, які знаходяться у файлі у

оригінальному вигляді, що необхідно для їхньої

коректної інтерпретації та обробки іншим

програмним забезпеченням. Нові дані додаються

у систему прозорим plug-and-play методом у

вигляді простого копіювання їх на вузол кластеру,
що зменшує затрати на адміністрування. Це

дозволяє існуючому програмному забезпеченню,

наприклад, ГІС системам або статистичним

пакетам напряму оперувати з файлами, які

використовуються ChronosServer, а також не

модифікувати старі коди генерації даних.

ChronosServer зберігає діючу на даний момент

інфраструктуру незмінною, запобігаючи

трудомісткі та піддані помилкам процедури

конвертації файлів даних, надаючи у той самий

час додаткові можливості для їхнього аналізу.

Сховище даних, доступ у реальному часі,

формати файлів, метадані, незмінна діюча

інфраструктура, старі коди

PLEASE, CITE AS:
Rodriges Zalipynis R.A. ChronosServer: real-time access to “native” multi-terabyte retrospective data

warehouse by thousands of concurrent clients. Informatics, cybernetics and computer engineering, pp. 151–

161. Vol. 14 (188), Donetsk, DonNTU, 2011.

